Properties

Label 2.2496.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $2496$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(2496\)\(\medspace = 2^{6} \cdot 3 \cdot 13 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.4.32448.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.156.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{3}, \sqrt{13})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 10x^{2} + 12 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 18 + 47\cdot 61 + 52\cdot 61^{2} + 33\cdot 61^{3} + 58\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 28 + 37\cdot 61 + 41\cdot 61^{2} + 42\cdot 61^{3} + 37\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 33 + 23\cdot 61 + 19\cdot 61^{2} + 18\cdot 61^{3} + 23\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 43 + 13\cdot 61 + 8\cdot 61^{2} + 27\cdot 61^{3} + 2\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.