Properties

Label 2.23e2_107.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 23^{2} \cdot 107 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$56603= 23^{2} \cdot 107 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 23 x^{4} - 13 x^{3} + 109 x^{2} - 67 x + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.107.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 2\cdot 31 + 6\cdot 31^{2} + 5\cdot 31^{3} + 7\cdot 31^{4} + 19\cdot 31^{5} + 28\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 19 + \left(26 a + 18\right)\cdot 31 + \left(9 a + 23\right)\cdot 31^{2} + \left(15 a + 12\right)\cdot 31^{3} + \left(3 a + 22\right)\cdot 31^{4} + \left(30 a + 13\right)\cdot 31^{5} + \left(25 a + 27\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 24 + 10\cdot 31 + 16\cdot 31^{2} + 22\cdot 31^{3} + 29\cdot 31^{4} + 31^{5} + 10\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 3 + \left(26 a + 27\right)\cdot 31 + \left(9 a + 2\right)\cdot 31^{2} + \left(15 a + 30\right)\cdot 31^{3} + \left(3 a + 13\right)\cdot 31^{4} + \left(30 a + 27\right)\cdot 31^{5} + \left(25 a + 8\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 12 + \left(4 a + 28\right)\cdot 31 + \left(21 a + 16\right)\cdot 31^{2} + \left(15 a + 2\right)\cdot 31^{3} + \left(27 a + 14\right)\cdot 31^{4} + 8\cdot 31^{5} + \left(5 a + 18\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 27 + \left(4 a + 5\right)\cdot 31 + \left(21 a + 27\right)\cdot 31^{2} + \left(15 a + 19\right)\cdot 31^{3} + \left(27 a + 5\right)\cdot 31^{4} + 22\cdot 31^{5} + \left(5 a + 30\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)(3,4)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)(5,6)$$-2$
$3$$2$$(1,2)(3,4)$$0$
$3$$2$$(1,4)(2,3)(5,6)$$0$
$2$$3$$(1,5,2)(3,6,4)$$-1$
$2$$6$$(1,6,2,3,5,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.