Properties

Label 2.23_97e2.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 23 \cdot 97^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$216407= 23 \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 59 x^{4} + 26 x^{3} + 314 x^{2} + 3019 x + 36878 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 15 + 9 a\cdot 19 + \left(17 a + 10\right)\cdot 19^{2} + \left(12 a + 15\right)\cdot 19^{3} + \left(8 a + 5\right)\cdot 19^{4} + \left(2 a + 11\right)\cdot 19^{5} + \left(16 a + 3\right)\cdot 19^{6} + \left(16 a + 9\right)\cdot 19^{7} + \left(14 a + 15\right)\cdot 19^{8} + \left(5 a + 11\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 4 + \left(9 a + 2\right)\cdot 19 + \left(a + 18\right)\cdot 19^{2} + \left(6 a + 10\right)\cdot 19^{3} + \left(10 a + 1\right)\cdot 19^{4} + \left(16 a + 5\right)\cdot 19^{5} + \left(2 a + 17\right)\cdot 19^{6} + \left(2 a + 9\right)\cdot 19^{7} + \left(4 a + 13\right)\cdot 19^{8} + \left(13 a + 2\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 5\cdot 19 + 11\cdot 19^{2} + \left(13 a + 8\right)\cdot 19^{3} + 9 a\cdot 19^{4} + \left(6 a + 2\right)\cdot 19^{5} + \left(6 a + 13\right)\cdot 19^{6} + \left(17 a + 1\right)\cdot 19^{7} + \left(13 a + 12\right)\cdot 19^{8} + \left(8 a + 14\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 3 + \left(6 a + 17\right)\cdot 19 + \left(15 a + 17\right)\cdot 19^{2} + \left(15 a + 18\right)\cdot 19^{3} + \left(16 a + 15\right)\cdot 19^{4} + 8\cdot 19^{5} + \left(12 a + 18\right)\cdot 19^{6} + \left(9 a + 12\right)\cdot 19^{7} + \left(14 a + 10\right)\cdot 19^{8} + 6\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 11 + \left(18 a + 13\right)\cdot 19 + \left(18 a + 10\right)\cdot 19^{2} + \left(5 a + 2\right)\cdot 19^{3} + \left(9 a + 16\right)\cdot 19^{4} + \left(12 a + 17\right)\cdot 19^{5} + \left(12 a + 12\right)\cdot 19^{6} + \left(a + 12\right)\cdot 19^{7} + \left(5 a + 8\right)\cdot 19^{8} + \left(10 a + 9\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 8 + \left(12 a + 18\right)\cdot 19 + \left(3 a + 7\right)\cdot 19^{2} + 3 a\cdot 19^{3} + \left(2 a + 17\right)\cdot 19^{4} + \left(18 a + 11\right)\cdot 19^{5} + \left(6 a + 10\right)\cdot 19^{6} + \left(9 a + 10\right)\cdot 19^{7} + \left(4 a + 15\right)\cdot 19^{8} + \left(18 a + 11\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,6,3,2,4,5)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$ $0$
$1$ $3$ $(1,3,4)(2,5,6)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,4,3)(2,6,5)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,4,3)(2,5,6)$ $-1$ $-1$
$2$ $3$ $(1,3,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,4,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$3$ $6$ $(1,6,3,2,4,5)$ $0$ $0$
$3$ $6$ $(1,5,4,2,3,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.