Properties

Label 2.23_79e2.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 23 \cdot 79^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$143543= 23 \cdot 79^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 41 x^{4} - 218 x^{3} + 578 x^{2} - 3560 x - 173779 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 1 + \left(6 a + 3\right)\cdot 17 + \left(5 a + 13\right)\cdot 17^{2} + 2 a\cdot 17^{3} + \left(6 a + 4\right)\cdot 17^{4} + \left(9 a + 12\right)\cdot 17^{5} + \left(14 a + 5\right)\cdot 17^{6} + \left(2 a + 3\right)\cdot 17^{7} + \left(a + 9\right)\cdot 17^{8} + \left(8 a + 10\right)\cdot 17^{9} + a\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 3 + \left(10 a + 7\right)\cdot 17 + \left(11 a + 12\right)\cdot 17^{2} + \left(14 a + 14\right)\cdot 17^{3} + \left(10 a + 7\right)\cdot 17^{4} + \left(7 a + 15\right)\cdot 17^{5} + \left(2 a + 10\right)\cdot 17^{6} + \left(14 a + 8\right)\cdot 17^{7} + \left(15 a + 7\right)\cdot 17^{8} + 8 a\cdot 17^{9} + \left(15 a + 11\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 11 + 5\cdot 17 + 13\cdot 17^{2} + 14\cdot 17^{3} + 5\cdot 17^{4} + 13\cdot 17^{5} + 15\cdot 17^{6} + 10\cdot 17^{7} + 9\cdot 17^{8} + 16\cdot 17^{9} + 14\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 14 + 6\cdot 17 + 8\cdot 17^{2} + 17^{3} + 5\cdot 17^{4} + 6\cdot 17^{5} + 5\cdot 17^{7} + 6\cdot 17^{9} + 5\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 7 a + \left(11 a + 12\right)\cdot 17 + \left(12 a + 9\right)\cdot 17^{2} + \left(14 a + 8\right)\cdot 17^{3} + \left(12 a + 6\right)\cdot 17^{4} + \left(9 a + 3\right)\cdot 17^{5} + \left(4 a + 3\right)\cdot 17^{6} + \left(15 a + 6\right)\cdot 17^{7} + \left(15 a + 3\right)\cdot 17^{8} + \left(14 a + 9\right)\cdot 17^{9} + \left(14 a + 9\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 7 + \left(5 a + 16\right)\cdot 17 + \left(4 a + 10\right)\cdot 17^{2} + \left(2 a + 10\right)\cdot 17^{3} + \left(4 a + 4\right)\cdot 17^{4} + 7 a\cdot 17^{5} + \left(12 a + 15\right)\cdot 17^{6} + \left(a + 16\right)\cdot 17^{7} + \left(a + 3\right)\cdot 17^{8} + \left(2 a + 8\right)\cdot 17^{9} + \left(2 a + 9\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,5,4,6)$
$(1,2)(5,6)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,6)(3,4)$ $-2$
$3$ $2$ $(1,2)(5,6)$ $0$
$3$ $2$ $(1,5)(2,3)(4,6)$ $0$
$2$ $3$ $(1,2,4)(3,5,6)$ $-1$
$2$ $6$ $(1,3,2,5,4,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.