Properties

Label 2.23_37e2.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 23 \cdot 37^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$31487= 23 \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 19 x^{4} + 6 x^{3} + 349 x^{2} + 184 x + 828 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.23_37.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 40 a + 19 + \left(21 a + 34\right)\cdot 43 + \left(a + 11\right)\cdot 43^{2} + \left(21 a + 17\right)\cdot 43^{3} + \left(25 a + 33\right)\cdot 43^{4} + \left(17 a + 31\right)\cdot 43^{5} + \left(19 a + 6\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 30 + \left(3 a + 40\right)\cdot 43 + \left(16 a + 33\right)\cdot 43^{2} + \left(15 a + 5\right)\cdot 43^{3} + 28 a\cdot 43^{4} + \left(40 a + 16\right)\cdot 43^{5} + \left(29 a + 11\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 16 + \left(21 a + 16\right)\cdot 43 + \left(41 a + 34\right)\cdot 43^{2} + \left(21 a + 36\right)\cdot 43^{3} + \left(17 a + 37\right)\cdot 43^{4} + \left(25 a + 23\right)\cdot 43^{5} + \left(23 a + 8\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 42 + 30 a\cdot 43 + \left(14 a + 9\right)\cdot 43^{2} + \left(40 a + 19\right)\cdot 43^{3} + \left(27 a + 28\right)\cdot 43^{4} + \left(26 a + 36\right)\cdot 43^{5} + \left(37 a + 23\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 6 + \left(39 a + 25\right)\cdot 43 + \left(26 a + 3\right)\cdot 43^{2} + \left(27 a + 5\right)\cdot 43^{3} + \left(14 a + 13\right)\cdot 43^{4} + \left(2 a + 28\right)\cdot 43^{5} + 13 a\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 19 + \left(12 a + 11\right)\cdot 43 + \left(28 a + 36\right)\cdot 43^{2} + \left(2 a + 1\right)\cdot 43^{3} + \left(15 a + 16\right)\cdot 43^{4} + \left(16 a + 35\right)\cdot 43^{5} + \left(5 a + 34\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(3,6,5)$
$(1,6,4,5,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(2,6)(3,4)$$0$
$1$$3$$(1,4,2)(3,6,5)$$-2 \zeta_{3} - 2$
$1$$3$$(1,2,4)(3,5,6)$$2 \zeta_{3}$
$2$$3$$(1,4,2)(3,5,6)$$-1$
$2$$3$$(3,6,5)$$-\zeta_{3}$
$2$$3$$(3,5,6)$$\zeta_{3} + 1$
$3$$6$$(1,6,4,5,2,3)$$0$
$3$$6$$(1,3,2,5,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.