Properties

Label 2.23_173e2.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 23 \cdot 173^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$688367= 23 \cdot 173^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 130 x^{4} + 85 x^{3} + 5591 x^{2} - 2108 x - 79463 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + 29 + 13\cdot 37 + \left(4 a + 9\right)\cdot 37^{2} + \left(16 a + 17\right)\cdot 37^{3} + \left(27 a + 36\right)\cdot 37^{4} + \left(9 a + 15\right)\cdot 37^{5} + \left(11 a + 32\right)\cdot 37^{6} + \left(5 a + 13\right)\cdot 37^{7} + \left(35 a + 29\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 24 + 20\cdot 37 + \left(4 a + 10\right)\cdot 37^{2} + 16 a\cdot 37^{3} + \left(27 a + 35\right)\cdot 37^{4} + \left(9 a + 17\right)\cdot 37^{5} + \left(11 a + 30\right)\cdot 37^{6} + \left(5 a + 26\right)\cdot 37^{7} + \left(35 a + 25\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 30 + \left(36 a + 25\right)\cdot 37 + \left(32 a + 24\right)\cdot 37^{2} + \left(20 a + 3\right)\cdot 37^{3} + \left(9 a + 19\right)\cdot 37^{4} + \left(27 a + 27\right)\cdot 37^{5} + \left(25 a + 30\right)\cdot 37^{6} + \left(31 a + 23\right)\cdot 37^{7} + \left(a + 16\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 23 + 5\cdot 37 + 37^{2} + 23\cdot 37^{3} + 20\cdot 37^{4} + 27\cdot 37^{5} + 13\cdot 37^{6} + 35\cdot 37^{7} + 14\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 18 + 12\cdot 37 + 2\cdot 37^{2} + 6\cdot 37^{3} + 19\cdot 37^{4} + 29\cdot 37^{5} + 11\cdot 37^{6} + 11\cdot 37^{7} + 11\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 25 + \left(36 a + 32\right)\cdot 37 + \left(32 a + 25\right)\cdot 37^{2} + \left(20 a + 23\right)\cdot 37^{3} + \left(9 a + 17\right)\cdot 37^{4} + \left(27 a + 29\right)\cdot 37^{5} + \left(25 a + 28\right)\cdot 37^{6} + \left(31 a + 36\right)\cdot 37^{7} + \left(a + 12\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,4)(5,6)$
$(1,2)(3,6)(4,5)$
$(1,3)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,6)(4,5)$$-2$
$3$$2$$(1,3)(2,6)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$2$$3$$(1,4,3)(2,5,6)$$-1$
$2$$6$$(1,5,3,2,4,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.