Properties

Label 2.23_157e2.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 23 \cdot 157^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$566927= 23 \cdot 157^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 118 x^{4} + 77 x^{3} + 4603 x^{2} - 1756 x - 59279 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8\cdot 11 + 7\cdot 11^{2} + 10\cdot 11^{3} + 5\cdot 11^{4} + 9\cdot 11^{5} + 3\cdot 11^{6} + 5\cdot 11^{7} + 11^{8} + 7\cdot 11^{9} + 4\cdot 11^{10} + 8\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 5 + \left(6 a + 10\right)\cdot 11 + \left(a + 7\right)\cdot 11^{2} + \left(6 a + 1\right)\cdot 11^{3} + \left(6 a + 6\right)\cdot 11^{4} + \left(10 a + 3\right)\cdot 11^{5} + \left(2 a + 6\right)\cdot 11^{6} + \left(4 a + 8\right)\cdot 11^{7} + \left(8 a + 3\right)\cdot 11^{8} + \left(3 a + 7\right)\cdot 11^{9} + 4\cdot 11^{10} + \left(7 a + 8\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 4 + \left(4 a + 9\right)\cdot 11 + \left(9 a + 6\right)\cdot 11^{2} + \left(4 a + 3\right)\cdot 11^{3} + \left(4 a + 4\right)\cdot 11^{4} + 4\cdot 11^{5} + \left(8 a + 10\right)\cdot 11^{6} + \left(6 a + 1\right)\cdot 11^{7} + 2 a\cdot 11^{8} + \left(7 a + 6\right)\cdot 11^{9} + \left(10 a + 5\right)\cdot 11^{10} + \left(3 a + 4\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 10 + \left(4 a + 9\right)\cdot 11 + \left(9 a + 7\right)\cdot 11^{2} + \left(4 a + 2\right)\cdot 11^{3} + \left(4 a + 4\right)\cdot 11^{4} + 6\cdot 11^{5} + \left(8 a + 7\right)\cdot 11^{6} + 6 a\cdot 11^{7} + 2 a\cdot 11^{8} + \left(7 a + 3\right)\cdot 11^{9} + \left(10 a + 2\right)\cdot 11^{10} + \left(3 a + 3\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 5 + 7\cdot 11 + 6\cdot 11^{2} + 6\cdot 11^{4} + 7\cdot 11^{5} + 6\cdot 11^{6} + 6\cdot 11^{7} + 11^{8} + 10\cdot 11^{9} + 7\cdot 11^{10} + 9\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 10 + \left(6 a + 9\right)\cdot 11 + \left(a + 6\right)\cdot 11^{2} + \left(6 a + 2\right)\cdot 11^{3} + \left(6 a + 6\right)\cdot 11^{4} + \left(10 a + 1\right)\cdot 11^{5} + \left(2 a + 9\right)\cdot 11^{6} + \left(4 a + 9\right)\cdot 11^{7} + \left(8 a + 3\right)\cdot 11^{8} + \left(3 a + 10\right)\cdot 11^{9} + 7\cdot 11^{10} + \left(7 a + 9\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)(3,5,6)$
$(1,3)(2,6)(4,5)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,6)(3,4)$ $-2$
$3$ $2$ $(1,3)(2,6)(4,5)$ $0$
$3$ $2$ $(2,4)(3,6)$ $0$
$2$ $3$ $(1,2,4)(3,5,6)$ $-1$
$2$ $6$ $(1,3,2,5,4,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.