Properties

Label 2.23_137e2.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 23 \cdot 137^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$431687= 23 \cdot 137^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 67 x^{4} + 376 x^{3} + 848 x^{2} - 10472 x + 934355 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 29 a + 36 + \left(36 a + 31\right)\cdot 43 + \left(34 a + 8\right)\cdot 43^{2} + \left(10 a + 23\right)\cdot 43^{3} + \left(22 a + 23\right)\cdot 43^{4} + \left(2 a + 14\right)\cdot 43^{5} + \left(41 a + 24\right)\cdot 43^{6} + \left(32 a + 36\right)\cdot 43^{7} + \left(31 a + 20\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 28 + 2\cdot 43 + 9\cdot 43^{2} + 24\cdot 43^{3} + 33\cdot 43^{4} + 29\cdot 43^{5} + 35\cdot 43^{7} + 24\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 22 + \left(6 a + 39\right)\cdot 43 + \left(8 a + 6\right)\cdot 43^{2} + \left(32 a + 42\right)\cdot 43^{3} + \left(20 a + 34\right)\cdot 43^{4} + \left(40 a + 37\right)\cdot 43^{5} + \left(a + 19\right)\cdot 43^{6} + \left(10 a + 28\right)\cdot 43^{7} + \left(11 a + 19\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 5 + 23\cdot 43 + \left(29 a + 2\right)\cdot 43^{2} + \left(25 a + 11\right)\cdot 43^{3} + \left(11 a + 33\right)\cdot 43^{4} + \left(6 a + 30\right)\cdot 43^{5} + \left(14 a + 38\right)\cdot 43^{6} + \left(21 a + 21\right)\cdot 43^{7} + \left(10 a + 14\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 37 a + 11 + \left(42 a + 17\right)\cdot 43 + \left(13 a + 31\right)\cdot 43^{2} + \left(17 a + 7\right)\cdot 43^{3} + \left(31 a + 19\right)\cdot 43^{4} + \left(36 a + 25\right)\cdot 43^{5} + \left(28 a + 3\right)\cdot 43^{6} + \left(21 a + 29\right)\cdot 43^{7} + \left(32 a + 3\right)\cdot 43^{8} +O\left(43^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 29 + 14\cdot 43 + 27\cdot 43^{2} + 20\cdot 43^{3} + 27\cdot 43^{4} + 33\cdot 43^{5} + 41\cdot 43^{6} + 20\cdot 43^{7} + 2\cdot 43^{8} +O\left(43^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,2)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,6)(3,5)$ $-2$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$
$3$ $2$ $(1,3)(4,5)$ $0$
$2$ $3$ $(1,6,3)(2,5,4)$ $-1$
$2$ $6$ $(1,5,6,4,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.