Properties

Label 2.23_113.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 23 \cdot 113 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$2599= 23 \cdot 113 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} - x^{3} + 23 x^{2} - 27 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 2 + \left(a + 5\right)\cdot 29 + \left(23 a + 5\right)\cdot 29^{2} + \left(18 a + 25\right)\cdot 29^{3} + \left(24 a + 9\right)\cdot 29^{4} + \left(7 a + 7\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 20 + \left(27 a + 1\right)\cdot 29 + \left(28 a + 12\right)\cdot 29^{2} + \left(14 a + 9\right)\cdot 29^{3} + \left(3 a + 5\right)\cdot 29^{4} + \left(13 a + 6\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 22 + \left(27 a + 6\right)\cdot 29 + \left(5 a + 3\right)\cdot 29^{2} + \left(10 a + 9\right)\cdot 29^{3} + \left(4 a + 27\right)\cdot 29^{4} + \left(21 a + 21\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 24 + 29 + 5\cdot 29^{2} + 26\cdot 29^{3} + 5\cdot 29^{4} + 10\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 25 + 12\cdot 29 + 19\cdot 29^{2} + 19\cdot 29^{3} + 29^{4} + 2\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 24 + a\cdot 29 + 13\cdot 29^{2} + \left(14 a + 26\right)\cdot 29^{3} + \left(25 a + 7\right)\cdot 29^{4} + \left(15 a + 10\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)(2,6,5)$
$(3,4)(5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-2$
$3$ $2$ $(3,4)(5,6)$ $0$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$
$2$ $3$ $(1,3,4)(2,6,5)$ $-1$
$2$ $6$ $(1,6,4,2,3,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.