Properties

Label 2.23_103e2.6t5.1c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 23 \cdot 103^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$244007= 23 \cdot 103^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 63 x^{4} - 178 x^{3} + 974 x^{2} + 10393 x + 40028 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.23_103.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 12 + \left(15 a + 30\right)\cdot 37 + \left(3 a + 16\right)\cdot 37^{2} + \left(a + 35\right)\cdot 37^{3} + \left(33 a + 30\right)\cdot 37^{4} + \left(a + 17\right)\cdot 37^{5} + \left(6 a + 18\right)\cdot 37^{6} + \left(5 a + 32\right)\cdot 37^{7} + \left(32 a + 15\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 8 + \left(11 a + 17\right)\cdot 37 + \left(14 a + 26\right)\cdot 37^{2} + \left(a + 34\right)\cdot 37^{3} + \left(23 a + 6\right)\cdot 37^{4} + 29\cdot 37^{5} + \left(25 a + 29\right)\cdot 37^{6} + \left(25 a + 10\right)\cdot 37^{7} + 22\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 13 + 31\cdot 37 + \left(28 a + 8\right)\cdot 37^{2} + \left(11 a + 35\right)\cdot 37^{3} + \left(33 a + 30\right)\cdot 37^{4} + \left(10 a + 7\right)\cdot 37^{5} + \left(29 a + 4\right)\cdot 37^{6} + 16\cdot 37^{7} + \left(13 a + 15\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ a + 4 + \left(25 a + 29\right)\cdot 37 + \left(22 a + 34\right)\cdot 37^{2} + \left(35 a + 25\right)\cdot 37^{3} + \left(13 a + 23\right)\cdot 37^{4} + \left(36 a + 8\right)\cdot 37^{5} + \left(11 a + 18\right)\cdot 37^{6} + \left(11 a + 14\right)\cdot 37^{7} + \left(36 a + 36\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 19 + \left(36 a + 13\right)\cdot 37 + \left(8 a + 9\right)\cdot 37^{2} + \left(25 a + 17\right)\cdot 37^{3} + \left(3 a + 4\right)\cdot 37^{4} + \left(26 a + 18\right)\cdot 37^{5} + \left(7 a + 36\right)\cdot 37^{6} + \left(36 a + 26\right)\cdot 37^{7} + \left(23 a + 29\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 21 + \left(21 a + 26\right)\cdot 37 + \left(33 a + 14\right)\cdot 37^{2} + \left(35 a + 36\right)\cdot 37^{3} + \left(3 a + 13\right)\cdot 37^{4} + \left(35 a + 29\right)\cdot 37^{5} + \left(30 a + 3\right)\cdot 37^{6} + \left(31 a + 10\right)\cdot 37^{7} + \left(4 a + 28\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,3,4)(2,5,6)$
$(1,6,4,2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$1$$3$$(1,4,3)(2,5,6)$$2 \zeta_{3}$
$1$$3$$(1,3,4)(2,6,5)$$-2 \zeta_{3} - 2$
$2$$3$$(1,3,4)(2,5,6)$$-1$
$2$$3$$(1,3,4)$$-\zeta_{3}$
$2$$3$$(1,4,3)$$\zeta_{3} + 1$
$3$$6$$(1,6,4,2,3,5)$$0$
$3$$6$$(1,5,3,2,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.