Properties

Label 2.23_101e2.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 23 \cdot 101^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$234623= 23 \cdot 101^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 76 x^{4} + 49 x^{3} + 1901 x^{2} - 776 x - 15599 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 16\cdot 17 + 5\cdot 17^{2} + 14\cdot 17^{3} + 9\cdot 17^{4} + 5\cdot 17^{5} + 6\cdot 17^{6} + 9\cdot 17^{7} + 3\cdot 17^{8} + 3\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 3 + \left(16 a + 10\right)\cdot 17 + \left(15 a + 7\right)\cdot 17^{2} + \left(16 a + 6\right)\cdot 17^{3} + \left(14 a + 11\right)\cdot 17^{4} + \left(14 a + 1\right)\cdot 17^{5} + \left(14 a + 16\right)\cdot 17^{6} + \left(15 a + 1\right)\cdot 17^{7} + \left(16 a + 5\right)\cdot 17^{8} + \left(10 a + 6\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 7 + 11\cdot 17 + \left(a + 4\right)\cdot 17^{2} + 11\cdot 17^{3} + \left(2 a + 11\right)\cdot 17^{4} + \left(2 a + 12\right)\cdot 17^{5} + \left(2 a + 1\right)\cdot 17^{6} + \left(a + 16\right)\cdot 17^{7} + 17^{8} + \left(6 a + 5\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 16 + \left(16 a + 2\right)\cdot 17 + \left(15 a + 5\right)\cdot 17^{2} + \left(16 a + 10\right)\cdot 17^{3} + \left(14 a + 13\right)\cdot 17^{4} + \left(14 a + 12\right)\cdot 17^{5} + \left(14 a + 1\right)\cdot 17^{6} + \left(15 a + 15\right)\cdot 17^{7} + 16 a\cdot 17^{8} + \left(10 a + 11\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 14 + 8\cdot 17 + 3\cdot 17^{2} + 17^{3} + 12\cdot 17^{4} + 16\cdot 17^{5} + 8\cdot 17^{6} + 5\cdot 17^{7} + 16\cdot 17^{8} + 7\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 11 + 17 + \left(a + 7\right)\cdot 17^{2} + 7\cdot 17^{3} + \left(2 a + 9\right)\cdot 17^{4} + \left(2 a + 1\right)\cdot 17^{5} + \left(2 a + 16\right)\cdot 17^{6} + \left(a + 2\right)\cdot 17^{7} + 6\cdot 17^{8} + 6 a\cdot 17^{9} +O\left(17^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,3)(2,4)(5,6)$
$(2,6)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,6)$$-2$
$3$$2$$(1,2)(4,5)$$0$
$3$$2$$(1,3)(2,4)(5,6)$$0$
$2$$3$$(1,6,2)(3,4,5)$$-1$
$2$$6$$(1,4,6,5,2,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.