Basic invariants
Dimension: | $2$ |
Group: | $Q_8$ |
Conductor: | \(233289\)\(\medspace = 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
Frobenius-Schur indicator: | $-1$ |
Root number: | $1$ |
Artin field: | Galois closure of 8.8.12696463968316569.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $Q_8$ |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{21}, \sqrt{69})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - x^{7} - 136x^{6} - 94x^{5} + 5029x^{4} + 6616x^{3} - 37504x^{2} + 14104x + 1360 \) . |
The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 2\cdot 17 + 4\cdot 17^{2} + 4\cdot 17^{3} + 9\cdot 17^{4} +O(17^{5})\) |
$r_{ 2 }$ | $=$ | \( 1 + 12\cdot 17 + 5\cdot 17^{2} + 3\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\) |
$r_{ 3 }$ | $=$ | \( 2 + 13\cdot 17 + 2\cdot 17^{2} + 4\cdot 17^{3} + 2\cdot 17^{4} +O(17^{5})\) |
$r_{ 4 }$ | $=$ | \( 3 + 5\cdot 17 + 4\cdot 17^{2} + 14\cdot 17^{3} + 4\cdot 17^{4} +O(17^{5})\) |
$r_{ 5 }$ | $=$ | \( 4 + 8\cdot 17 + 15\cdot 17^{2} + 13\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\) |
$r_{ 6 }$ | $=$ | \( 5 + 14\cdot 17 + 16\cdot 17^{2} + 5\cdot 17^{3} +O(17^{5})\) |
$r_{ 7 }$ | $=$ | \( 7 + 15\cdot 17 + 13\cdot 17^{2} + 8\cdot 17^{3} + 13\cdot 17^{4} +O(17^{5})\) |
$r_{ 8 }$ | $=$ | \( 13 + 14\cdot 17 + 4\cdot 17^{2} + 13\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | ✓ |
$1$ | $2$ | $(1,4)(2,5)(3,8)(6,7)$ | $-2$ | |
$2$ | $4$ | $(1,7,4,6)(2,3,5,8)$ | $0$ | |
$2$ | $4$ | $(1,3,4,8)(2,6,5,7)$ | $0$ | |
$2$ | $4$ | $(1,2,4,5)(3,7,8,6)$ | $0$ |