Properties

Label 2.2304.8t11.e.a
Dimension $2$
Group $Q_8:C_2$
Conductor $2304$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Artin stem field: Galois closure of 8.0.3057647616.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.8.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\zeta_{12})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 12x^{6} + 54x^{4} - 72x^{2} + 36 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 8 + 53\cdot 73 + 59\cdot 73^{2} + 20\cdot 73^{3} + 61\cdot 73^{4} + 37\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 + 52\cdot 73 + 71\cdot 73^{2} + 31\cdot 73^{3} + 15\cdot 73^{4} + 29\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 24 + 53\cdot 73 + 69\cdot 73^{2} + 16\cdot 73^{3} + 57\cdot 73^{4} + 40\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 28 + 19\cdot 73 + 3\cdot 73^{2} + 24\cdot 73^{3} + 17\cdot 73^{4} + 41\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 45 + 53\cdot 73 + 69\cdot 73^{2} + 48\cdot 73^{3} + 55\cdot 73^{4} + 31\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 49 + 19\cdot 73 + 3\cdot 73^{2} + 56\cdot 73^{3} + 15\cdot 73^{4} + 32\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 62 + 20\cdot 73 + 73^{2} + 41\cdot 73^{3} + 57\cdot 73^{4} + 43\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 65 + 19\cdot 73 + 13\cdot 73^{2} + 52\cdot 73^{3} + 11\cdot 73^{4} + 35\cdot 73^{5} +O(73^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,8)(4,5)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,8)(4,5)$$0$
$2$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$1$$4$$(1,4,8,5)(2,6,7,3)$$-2 \zeta_{4}$
$1$$4$$(1,5,8,4)(2,3,7,6)$$2 \zeta_{4}$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$