Properties

Label 2.2243.24t22.2c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2243 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$2243 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 3 x^{6} - x^{5} + 13 x^{4} + 33 x^{3} + 44 x^{2} + 38 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.2243.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 28 + \left(16 a + 6\right)\cdot 41 + \left(7 a + 14\right)\cdot 41^{2} + \left(33 a + 33\right)\cdot 41^{3} + \left(17 a + 37\right)\cdot 41^{4} + \left(32 a + 6\right)\cdot 41^{5} + \left(26 a + 29\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 34 + 30\cdot 41 + 32\cdot 41^{2} + 36\cdot 41^{3} + 41^{4} + 25\cdot 41^{5} + 13\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 37 + \left(36 a + 38\right)\cdot 41 + \left(a + 39\right)\cdot 41^{2} + \left(19 a + 34\right)\cdot 41^{3} + \left(22 a + 22\right)\cdot 41^{4} + \left(15 a + 24\right)\cdot 41^{5} + \left(35 a + 5\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 28 + \left(13 a + 39\right)\cdot 41 + \left(28 a + 20\right)\cdot 41^{2} + \left(15 a + 23\right)\cdot 41^{3} + \left(30 a + 31\right)\cdot 41^{4} + \left(31 a + 23\right)\cdot 41^{5} + \left(28 a + 14\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 13 + 28\cdot 41 + 16\cdot 41^{2} + 23\cdot 41^{3} + 38\cdot 41^{4} + 23\cdot 41^{5} + 22\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 31 a + 17 + \left(24 a + 4\right)\cdot 41 + \left(33 a + 20\right)\cdot 41^{2} + \left(7 a + 2\right)\cdot 41^{3} + \left(23 a + 17\right)\cdot 41^{4} + \left(8 a + 4\right)\cdot 41^{5} + \left(14 a + 36\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 14 a + 27 + \left(27 a + 12\right)\cdot 41 + \left(12 a + 10\right)\cdot 41^{2} + \left(25 a + 1\right)\cdot 41^{3} + \left(10 a + 25\right)\cdot 41^{4} + \left(9 a + 6\right)\cdot 41^{5} + \left(12 a + 28\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 18 a + 24 + \left(4 a + 2\right)\cdot 41 + \left(39 a + 9\right)\cdot 41^{2} + \left(21 a + 8\right)\cdot 41^{3} + \left(18 a + 30\right)\cdot 41^{4} + \left(25 a + 7\right)\cdot 41^{5} + \left(5 a + 14\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,4)(3,6,7)$
$(1,5,7,2)(3,4,8,6)$
$(1,3)(4,6)(7,8)$
$(1,4,7,6)(2,8,5,3)$
$(1,7)(2,5)(3,8)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,5)(3,8)(4,6)$$-2$
$12$$2$$(1,3)(4,6)(7,8)$$0$
$8$$3$$(2,4,3)(5,6,8)$$-1$
$6$$4$$(1,4,7,6)(2,8,5,3)$$0$
$8$$6$$(1,3,4,7,8,6)(2,5)$$1$
$6$$8$$(1,2,8,6,7,5,3,4)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,5,8,4,7,2,3,6)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.