Properties

Label 2.221.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $221$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(221\)\(\medspace = 13 \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.3757.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.221.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{13}, \sqrt{17})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 6x^{2} - 5x + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 17 + 92\cdot 101 + 13\cdot 101^{2} + 44\cdot 101^{3} + 49\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 50 + 67\cdot 101 + 73\cdot 101^{2} + 98\cdot 101^{3} + 47\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 52 + 33\cdot 101 + 27\cdot 101^{2} + 2\cdot 101^{3} + 53\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 85 + 8\cdot 101 + 87\cdot 101^{2} + 56\cdot 101^{3} + 51\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$