Properties

Label 2.221.4t3.a.a
Dimension $2$
Group $D_4$
Conductor $221$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_4$
Conductor: \(221\)\(\medspace = 13 \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin field: Galois closure of 8.0.2385443281.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.221.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{13}, \sqrt{17})\)

Defining polynomial

$f(x)$$=$ \( x^{8} + x^{6} - 4x^{5} - 38x^{4} - 2x^{3} + 123x^{2} - 34x + 17 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 8 + 98\cdot 103 + 44\cdot 103^{2} + 47\cdot 103^{3} + 36\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 26 + 45\cdot 103 + 43\cdot 103^{2} + 23\cdot 103^{3} + 47\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 30 + 87\cdot 103 + 21\cdot 103^{2} + 20\cdot 103^{3} + 20\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 50 + 31\cdot 103 + 91\cdot 103^{2} + 95\cdot 103^{3} + 13\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 57 + 17\cdot 103 + 20\cdot 103^{2} + 40\cdot 103^{3} + 99\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 64 + 56\cdot 103 + 30\cdot 103^{2} + 39\cdot 103^{3} + 76\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 84 + 19\cdot 103 + 39\cdot 103^{2} + 23\cdot 103^{3} + 79\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 93 + 55\cdot 103 + 17\cdot 103^{2} + 19\cdot 103^{3} + 39\cdot 103^{4} +O(103^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,6)(4,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,8)(3,5)(6,7)$$-2$
$2$$2$$(1,2)(3,6)(4,8)(5,7)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$4$$(1,7,4,6)(2,3,8,5)$$0$