Properties

Label 2.2175.6t3.d
Dimension $2$
Group $D_{6}$
Conductor $2175$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(2175\)\(\medspace = 3 \cdot 5^{2} \cdot 29 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.946125.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.87.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 1 + 10\cdot 19 + 3\cdot 19^{2} + 13\cdot 19^{3} + 10\cdot 19^{4} + 8\cdot 19^{5} + 17\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 a + 10 + \left(16 a + 8\right)\cdot 19 + \left(9 a + 6\right)\cdot 19^{2} + 4 a\cdot 19^{3} + \left(9 a + 6\right)\cdot 19^{4} + 3\cdot 19^{5} + \left(14 a + 5\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 8 a + 2 + \left(2 a + 14\right)\cdot 19 + \left(9 a + 18\right)\cdot 19^{2} + \left(14 a + 13\right)\cdot 19^{3} + \left(9 a + 10\right)\cdot 19^{4} + \left(18 a + 13\right)\cdot 19^{5} + \left(4 a + 18\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 10 a + 16 + \left(11 a + 4\right)\cdot 19 + \left(6 a + 15\right)\cdot 19^{2} + \left(13 a + 6\right)\cdot 19^{3} + \left(2 a + 13\right)\cdot 19^{4} + \left(11 a + 7\right)\cdot 19^{5} + \left(8 a + 14\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 a + 7 + \left(7 a + 6\right)\cdot 19 + \left(12 a + 10\right)\cdot 19^{2} + \left(5 a + 13\right)\cdot 19^{3} + \left(16 a + 2\right)\cdot 19^{4} + \left(7 a + 16\right)\cdot 19^{5} + \left(10 a + 11\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 + 13\cdot 19 + 2\cdot 19^{2} + 9\cdot 19^{3} + 13\cdot 19^{4} + 7\cdot 19^{5} + 8\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-2$
$3$ $2$ $(1,2)(3,5)(4,6)$ $0$
$3$ $2$ $(1,5)(3,6)$ $0$
$2$ $3$ $(1,4,5)(2,3,6)$ $-1$
$2$ $6$ $(1,3,4,6,5,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.