Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(2175\)\(\medspace = 3 \cdot 5^{2} \cdot 29 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.2.946125.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.87.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{2} + 18x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 1 + 10\cdot 19 + 3\cdot 19^{2} + 13\cdot 19^{3} + 10\cdot 19^{4} + 8\cdot 19^{5} + 17\cdot 19^{6} +O(19^{7})\)
|
$r_{ 2 }$ | $=$ |
\( 11 a + 10 + \left(16 a + 8\right)\cdot 19 + \left(9 a + 6\right)\cdot 19^{2} + 4 a\cdot 19^{3} + \left(9 a + 6\right)\cdot 19^{4} + 3\cdot 19^{5} + \left(14 a + 5\right)\cdot 19^{6} +O(19^{7})\)
|
$r_{ 3 }$ | $=$ |
\( 8 a + 2 + \left(2 a + 14\right)\cdot 19 + \left(9 a + 18\right)\cdot 19^{2} + \left(14 a + 13\right)\cdot 19^{3} + \left(9 a + 10\right)\cdot 19^{4} + \left(18 a + 13\right)\cdot 19^{5} + \left(4 a + 18\right)\cdot 19^{6} +O(19^{7})\)
|
$r_{ 4 }$ | $=$ |
\( 10 a + 16 + \left(11 a + 4\right)\cdot 19 + \left(6 a + 15\right)\cdot 19^{2} + \left(13 a + 6\right)\cdot 19^{3} + \left(2 a + 13\right)\cdot 19^{4} + \left(11 a + 7\right)\cdot 19^{5} + \left(8 a + 14\right)\cdot 19^{6} +O(19^{7})\)
|
$r_{ 5 }$ | $=$ |
\( 9 a + 7 + \left(7 a + 6\right)\cdot 19 + \left(12 a + 10\right)\cdot 19^{2} + \left(5 a + 13\right)\cdot 19^{3} + \left(16 a + 2\right)\cdot 19^{4} + \left(7 a + 16\right)\cdot 19^{5} + \left(10 a + 11\right)\cdot 19^{6} +O(19^{7})\)
|
$r_{ 6 }$ | $=$ |
\( 3 + 13\cdot 19 + 2\cdot 19^{2} + 9\cdot 19^{3} + 13\cdot 19^{4} + 7\cdot 19^{5} + 8\cdot 19^{6} +O(19^{7})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,6)(2,4)(3,5)$ | $-2$ |
$3$ | $2$ | $(1,2)(3,5)(4,6)$ | $0$ |
$3$ | $2$ | $(1,5)(3,6)$ | $0$ |
$2$ | $3$ | $(1,4,5)(2,3,6)$ | $-1$ |
$2$ | $6$ | $(1,3,4,6,5,2)$ | $1$ |