Properties

Label 2.216.3t2.b.a
Dimension $2$
Group $S_3$
Conductor $216$
Root number $1$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $S_3$
Conductor: \(216\)\(\medspace = 2^{3} \cdot 3^{3}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 3.1.216.1
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: odd
Determinant: 1.24.2t1.b.a
Projective image: S_3
Projective stem field: 3.1.216.1

Defining polynomial

$f(x)$$=$\(x^{3} + 3 x - 2\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 6 + 19\cdot 29 + 15\cdot 29^{2} + 18\cdot 29^{3} + 20\cdot 29^{4} +O(29^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 9 + 23\cdot 29 + 16\cdot 29^{2} + 11\cdot 29^{3} + 6\cdot 29^{4} +O(29^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 14 + 15\cdot 29 + 25\cdot 29^{2} + 27\cdot 29^{3} + 29^{4} +O(29^{5})\)  Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$

The blue line marks the conjugacy class containing complex conjugation.