Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(21243\)\(\medspace = 3 \cdot 73 \cdot 97 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.2.2060571.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.21243.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{97}, \sqrt{-219})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - 2x^{3} - 18x^{2} + 19x - 128 \) . |
The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 13 + 31\cdot 47 + 28\cdot 47^{2} + 36\cdot 47^{3} + 26\cdot 47^{4} +O(47^{5})\) |
$r_{ 2 }$ | $=$ | \( 20 + 16\cdot 47 + 26\cdot 47^{2} + 36\cdot 47^{3} + 36\cdot 47^{4} +O(47^{5})\) |
$r_{ 3 }$ | $=$ | \( 28 + 30\cdot 47 + 20\cdot 47^{2} + 10\cdot 47^{3} + 10\cdot 47^{4} +O(47^{5})\) |
$r_{ 4 }$ | $=$ | \( 35 + 15\cdot 47 + 18\cdot 47^{2} + 10\cdot 47^{3} + 20\cdot 47^{4} +O(47^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,4)$ | $0$ |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.