Properties

Label 2.21243.4t3.c
Dimension $2$
Group $D_{4}$
Conductor $21243$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(21243\)\(\medspace = 3 \cdot 73 \cdot 97 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.2.2060571.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{97}, \sqrt{-219})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 13 + 31\cdot 47 + 28\cdot 47^{2} + 36\cdot 47^{3} + 26\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 20 + 16\cdot 47 + 26\cdot 47^{2} + 36\cdot 47^{3} + 36\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 28 + 30\cdot 47 + 20\cdot 47^{2} + 10\cdot 47^{3} + 10\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 35 + 15\cdot 47 + 18\cdot 47^{2} + 10\cdot 47^{3} + 20\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.