Properties

Label 2.21025.8t5.a.a
Dimension $2$
Group $Q_8$
Conductor $21025$
Root number $1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(21025\)\(\medspace = 5^{2} \cdot 29^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $1$
Artin field: Galois closure of 8.8.9294114390625.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{29})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - x^{7} - 47x^{6} + 40x^{5} + 581x^{4} - 220x^{3} - 2038x^{2} - 932x - 109 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 2 + 7\cdot 59 + 51\cdot 59^{2} + 13\cdot 59^{3} + 4\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 + 27\cdot 59 + 36\cdot 59^{2} + 42\cdot 59^{3} + 34\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 + 38\cdot 59 + 40\cdot 59^{2} + 43\cdot 59^{3} + 49\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 9 + 55\cdot 59 + 59^{2} + 31\cdot 59^{3} + 42\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 + 30\cdot 59 + 19\cdot 59^{2} + 48\cdot 59^{3} + 3\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 19 + 23\cdot 59 + 57\cdot 59^{2} + 42\cdot 59^{3} + 43\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 28 + 42\cdot 59 + 39\cdot 59^{2} + 35\cdot 59^{3} + 41\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 42 + 12\cdot 59 + 48\cdot 59^{2} + 36\cdot 59^{3} + 15\cdot 59^{4} +O(59^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,3,8)(2,4,5,6)$
$(1,4,3,6)(2,8,5,7)$
$(1,3)(2,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,6)(7,8)$$-2$
$2$$4$$(1,7,3,8)(2,4,5,6)$$0$
$2$$4$$(1,4,3,6)(2,8,5,7)$$0$
$2$$4$$(1,2,3,5)(4,7,6,8)$$0$