Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(20564\)\(\medspace = 2^{2} \cdot 53 \cdot 97 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 4.2.1994708.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{-53}, \sqrt{97})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ | $=$ | \( 4 + 18\cdot 31 + 7\cdot 31^{2} + 21\cdot 31^{3} + 20\cdot 31^{4} + 6\cdot 31^{5} +O(31^{6})\) |
$r_{ 2 }$ | $=$ | \( 14 + 9\cdot 31 + 3\cdot 31^{2} + 9\cdot 31^{3} + 25\cdot 31^{4} + 15\cdot 31^{5} +O(31^{6})\) |
$r_{ 3 }$ | $=$ | \( 17 + 21\cdot 31 + 27\cdot 31^{2} + 21\cdot 31^{3} + 5\cdot 31^{4} + 15\cdot 31^{5} +O(31^{6})\) |
$r_{ 4 }$ | $=$ | \( 27 + 12\cdot 31 + 23\cdot 31^{2} + 9\cdot 31^{3} + 10\cdot 31^{4} + 24\cdot 31^{5} +O(31^{6})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,4)$ | $0$ |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |