Properties

Label 2.2023.3t2.b
Dimension $2$
Group $S_3$
Conductor $2023$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:\(2023\)\(\medspace = 7 \cdot 17^{2}\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 3.1.2023.1
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: odd
Projective image: S_3
Projective field: 3.1.2023.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 1 + 3\cdot 11 + 5\cdot 11^{2} + 11^{3} + 2\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 4 + 2\cdot 11 + 11^{2} + 8\cdot 11^{3} + 2\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 7 + 5\cdot 11 + 4\cdot 11^{2} + 11^{3} + 6\cdot 11^{4} +O(11^{5})\)  Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$
$1$ $1$ $()$ $2$
$3$ $2$ $(1,2)$ $0$
$2$ $3$ $(1,2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.