Properties

Label 2.19e2_139.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 19^{2} \cdot 139 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$50179= 19^{2} \cdot 139 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 31 x^{4} + 318 x^{3} + 680 x^{2} - 3551 x + 5365 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 30 + \left(93 a + 95\right)\cdot 103 + \left(60 a + 5\right)\cdot 103^{2} + \left(102 a + 99\right)\cdot 103^{3} + \left(27 a + 65\right)\cdot 103^{4} + \left(83 a + 17\right)\cdot 103^{5} + \left(15 a + 93\right)\cdot 103^{6} +O\left(103^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 63 a + 84 + \left(85 a + 32\right)\cdot 103 + \left(44 a + 52\right)\cdot 103^{2} + \left(27 a + 7\right)\cdot 103^{3} + \left(5 a + 71\right)\cdot 103^{4} + \left(102 a + 56\right)\cdot 103^{5} + \left(26 a + 62\right)\cdot 103^{6} +O\left(103^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 78 a + 55 + \left(9 a + 60\right)\cdot 103 + \left(42 a + 76\right)\cdot 103^{2} + 37\cdot 103^{3} + \left(75 a + 94\right)\cdot 103^{4} + \left(19 a + 72\right)\cdot 103^{5} + \left(87 a + 25\right)\cdot 103^{6} +O\left(103^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 40 a + 44 + \left(17 a + 55\right)\cdot 103 + \left(58 a + 11\right)\cdot 103^{2} + \left(75 a + 93\right)\cdot 103^{3} + \left(97 a + 48\right)\cdot 103^{4} + 50\cdot 103^{5} + \left(76 a + 90\right)\cdot 103^{6} +O\left(103^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 86 a + 57 + \left(44 a + 1\right)\cdot 103 + \left(37 a + 85\right)\cdot 103^{2} + \left(10 a + 100\right)\cdot 103^{3} + \left(60 a + 40\right)\cdot 103^{4} + \left(97 a + 88\right)\cdot 103^{5} + \left(95 a + 70\right)\cdot 103^{6} +O\left(103^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 40 + \left(58 a + 63\right)\cdot 103 + \left(65 a + 77\right)\cdot 103^{2} + \left(92 a + 73\right)\cdot 103^{3} + \left(42 a + 90\right)\cdot 103^{4} + \left(5 a + 22\right)\cdot 103^{5} + \left(7 a + 69\right)\cdot 103^{6} +O\left(103^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)$
$(1,3)(2,4)(5,6)$
$(1,6,4)(2,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,3)(2,4)(5,6)$ $0$ $0$
$1$ $3$ $(1,4,6)(2,5,3)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,6,4)(2,3,5)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,6,4)(2,5,3)$ $-1$ $-1$
$2$ $3$ $(1,4,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,6,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$3$ $6$ $(1,3,4,2,6,5)$ $0$ $0$
$3$ $6$ $(1,5,6,2,4,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.