Properties

Label 2.19_37.8t12.1
Dimension 2
Group $\SL(2,3)$
Conductor $ 19 \cdot 37 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$703= 19 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 14 x^{6} + 17 x^{5} + 74 x^{4} - 26 x^{3} - 145 x^{2} - 43 x + 29 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + 7 a + \left(10 a^{2} + 5 a + 6\right)\cdot 13 + \left(a^{2} + 2 a + 3\right)\cdot 13^{2} + \left(11 a^{2} + 7 a + 8\right)\cdot 13^{3} + \left(a^{2} + 4 a + 11\right)\cdot 13^{4} + \left(11 a^{2} + 4 a + 10\right)\cdot 13^{5} + \left(2 a^{2} + 12 a + 6\right)\cdot 13^{6} + \left(8 a^{2} + 10 a + 9\right)\cdot 13^{7} + \left(8 a^{2} + 9 a + 2\right)\cdot 13^{8} + 5 a^{2}13^{9} +O\left(13^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 12 a^{2} + 12 a + 12 + \left(12 a^{2} + 2 a\right)\cdot 13 + \left(10 a^{2} + 5 a + 7\right)\cdot 13^{2} + \left(6 a^{2} + 4 a + 2\right)\cdot 13^{3} + \left(8 a^{2} + 9 a + 3\right)\cdot 13^{4} + \left(a + 1\right)\cdot 13^{5} + \left(5 a^{2} + 9 a + 1\right)\cdot 13^{6} + \left(7 a^{2} + 7 a + 4\right)\cdot 13^{7} + \left(5 a^{2} + 12 a + 7\right)\cdot 13^{8} + \left(6 a^{2} + 7 a + 5\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 2 + 12\cdot 13 + 8\cdot 13^{2} + 3\cdot 13^{3} + 5\cdot 13^{4} + 5\cdot 13^{5} + 13^{6} + 11\cdot 13^{7} + 10\cdot 13^{8} + 9\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + 9 + \left(11 a^{2} + 2 a + 11\right)\cdot 13 + \left(10 a^{2} + 8 a + 12\right)\cdot 13^{2} + \left(12 a^{2} + 5 a + 5\right)\cdot 13^{3} + \left(6 a^{2} + 7\right)\cdot 13^{4} + \left(a^{2} + 12 a + 7\right)\cdot 13^{5} + \left(7 a^{2} + 10 a + 12\right)\cdot 13^{6} + \left(10 a + 7\right)\cdot 13^{7} + \left(3 a^{2} + 2 a + 12\right)\cdot 13^{8} + \left(3 a^{2} + 2 a + 7\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 11 a^{2} + 7 a + 2 + \left(2 a^{2} + 4 a + 9\right)\cdot 13 + \left(5 a + 5\right)\cdot 13^{2} + \left(8 a^{2} + a + 8\right)\cdot 13^{3} + \left(2 a^{2} + 12 a + 12\right)\cdot 13^{4} + \left(a^{2} + 6 a + 1\right)\cdot 13^{5} + \left(5 a^{2} + 4 a + 1\right)\cdot 13^{6} + \left(10 a^{2} + 7 a + 8\right)\cdot 13^{7} + \left(11 a^{2} + 3 a + 2\right)\cdot 13^{8} + \left(4 a + 11\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{2} + 5 a + 10 + \left(12 a^{2} + 6 a + 4\right)\cdot 13 + \left(10 a^{2} + 3 a + 4\right)\cdot 13^{2} + \left(7 a^{2} + 12 a + 12\right)\cdot 13^{3} + \left(4 a^{2} + 5 a + 12\right)\cdot 13^{4} + \left(6 a^{2} + 3 a\right)\cdot 13^{5} + \left(5 a^{2} + 9 a + 6\right)\cdot 13^{6} + \left(10 a^{2} + 12 a + 12\right)\cdot 13^{7} + \left(4 a^{2} + 12 a + 1\right)\cdot 13^{8} + \left(3 a^{2} + 8 a + 8\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 12 a^{2} + 8 a + 1 + \left(a^{2} + 4 a + 12\right)\cdot 13 + \left(4 a^{2} + a + 3\right)\cdot 13^{2} + \left(5 a^{2} + 8 a\right)\cdot 13^{3} + \left(a^{2} + 6 a\right)\cdot 13^{4} + \left(5 a^{2} + 10 a + 8\right)\cdot 13^{5} + \left(5 a + 3\right)\cdot 13^{6} + \left(2 a^{2} + 2 a + 1\right)\cdot 13^{7} + \left(5 a^{2} + 10 a + 11\right)\cdot 13^{8} + \left(6 a^{2} + a + 7\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 5 + 8\cdot 13 + 5\cdot 13^{2} + 10\cdot 13^{3} + 11\cdot 13^{4} + 2\cdot 13^{5} + 6\cdot 13^{6} + 10\cdot 13^{7} + 2\cdot 13^{8} + 13^{9} +O\left(13^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,7)(3,8)(4,5)$
$(1,3,7)(2,6,8)$
$(1,8,6,3)(2,5,7,4)$
$(1,7,6,2)(3,4,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $-2$ $-2$
$4$ $3$ $(1,2,5)(4,6,7)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$4$ $3$ $(1,5,2)(4,7,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$6$ $4$ $(1,8,6,3)(2,5,7,4)$ $0$ $0$
$4$ $6$ $(1,8,7,6,3,2)(4,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$4$ $6$ $(1,2,3,6,7,8)(4,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.