Properties

Label 2.199.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 199 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$199 $
Artin number field: Splitting field of $f= x^{9} - x^{8} - 3 x^{6} + 3 x^{3} + 3 x^{2} + 5 x + 1 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.199.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{3} + 2 x + 27 $
Roots:
$r_{ 1 }$ $=$ $ 28 a^{2} + 11 a + 19 + \left(5 a^{2} + 16 a + 5\right)\cdot 29 + \left(23 a^{2} + 9 a\right)\cdot 29^{2} + \left(21 a^{2} + 24 a + 14\right)\cdot 29^{3} + \left(8 a^{2} + 20 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a^{2} + 20 a + 27 + \left(6 a^{2} + 7 a + 2\right)\cdot 29 + \left(10 a^{2} + 20 a + 2\right)\cdot 29^{2} + \left(5 a^{2} + 5 a + 22\right)\cdot 29^{3} + \left(11 a^{2} + 17 a + 20\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a^{2} + 13 a + 3 + \left(16 a^{2} + a + 20\right)\cdot 29 + \left(11 a^{2} + 8 a + 28\right)\cdot 29^{2} + \left(21 a^{2} + 5 a + 18\right)\cdot 29^{3} + \left(7 a^{2} + 19 a + 23\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 a^{2} + 3 a + 4 + \left(6 a^{2} + 20 a + 26\right)\cdot 29 + \left(15 a^{2} + 12 a + 8\right)\cdot 29^{2} + \left(4 a^{2} + 26 a + 10\right)\cdot 29^{3} + \left(a^{2} + 18 a + 11\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 a^{2} + 11 a + 22 + \left(2 a^{2} + 10 a + 1\right)\cdot 29 + \left(12 a^{2} + 8 a + 10\right)\cdot 29^{2} + \left(11 a^{2} + 7 a + 15\right)\cdot 29^{3} + \left(17 a^{2} + 21 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a^{2} + 5 a + 10 + \left(10 a^{2} + 17 a + 2\right)\cdot 29 + \left(5 a^{2} + 12 a + 1\right)\cdot 29^{2} + \left(25 a^{2} + 16 a + 24\right)\cdot 29^{3} + \left(3 a^{2} + 17 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 a^{2} + 13 a + 12 + \left(24 a^{2} + 28 a + 7\right)\cdot 29 + \left(27 a^{2} + 9 a + 6\right)\cdot 29^{2} + \left(20 a^{2} + 12 a + 4\right)\cdot 29^{3} + \left(4 a^{2} + 27 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 6 a^{2} + 15 a + 9 + \left(16 a^{2} + 21 a + 19\right)\cdot 29 + \left(19 a^{2} + 6 a + 14\right)\cdot 29^{2} + \left(2 a^{2} + 7 a + 17\right)\cdot 29^{3} + \left(19 a^{2} + 18 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 3 a^{2} + 25 a + 11 + \left(27 a^{2} + 21 a + 1\right)\cdot 29 + \left(19 a^{2} + 27 a + 15\right)\cdot 29^{2} + \left(2 a^{2} + 10 a + 18\right)\cdot 29^{3} + \left(13 a^{2} + 13 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,8)(2,7,9)(3,6,5)$
$(1,9,5,4,2,3,8,7,6)$
$(1,5)(2,7)(3,8)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,5)(2,7)(3,8)(4,6)$$0$
$2$$3$$(1,4,8)(2,7,9)(3,6,5)$$-1$
$2$$9$$(1,9,5,4,2,3,8,7,6)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,5,2,8,6,9,4,3,7)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,2,6,4,7,5,8,9,3)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.