Properties

Label 2.198025.8t5.a
Dimension $2$
Group $Q_8$
Conductor $198025$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8$
Conductor:\(198025\)\(\medspace = 5^{2} \cdot 89^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $1$
Artin number field: Galois closure of 8.0.7765332671265625.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{89})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 21 + 81\cdot 139 + 91\cdot 139^{2} + 24\cdot 139^{3} + 117\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 47 + 71\cdot 139 + 15\cdot 139^{2} + 39\cdot 139^{3} + 128\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 65 + 102\cdot 139 + 123\cdot 139^{2} + 35\cdot 139^{3} + 74\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 82 + 8\cdot 139 + 18\cdot 139^{2} + 108\cdot 139^{3} + 100\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 107 + 49\cdot 139 + 102\cdot 139^{2} + 13\cdot 139^{3} + 64\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 120 + 108\cdot 139 + 53\cdot 139^{2} + 91\cdot 139^{3} + 91\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 126 + 37\cdot 139 + 83\cdot 139^{2} + 3\cdot 139^{3} + 7\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 128 + 95\cdot 139 + 67\cdot 139^{2} + 100\cdot 139^{3} + 111\cdot 139^{4} +O(139^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,3,5)(2,8,4,6)$
$(1,4,3,2)(5,6,7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $-2$
$2$ $4$ $(1,7,3,5)(2,8,4,6)$ $0$
$2$ $4$ $(1,4,3,2)(5,6,7,8)$ $0$
$2$ $4$ $(1,8,3,6)(2,5,4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.