Properties

Label 2.192.8t11.b.b
Dimension $2$
Group $Q_8:C_2$
Conductor $192$
Root number not computed
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Artin stem field: 8.0.5308416.2
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.24.2t1.b.a
Projective image: $C_2^2$
Projective field: \(\Q(\sqrt{-2}, \sqrt{-3})\)

Defining polynomial

$f(x)$$=$\(x^{8} - 2 x^{6} + 5 x^{4} - 4 x^{2} + 1\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 6 + 32\cdot 73 + 55\cdot 73^{2} + 61\cdot 73^{3} + 29\cdot 73^{4} +O(73^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 26 + 58\cdot 73 + 44\cdot 73^{3} + 46\cdot 73^{4} +O(73^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 29 + 41\cdot 73 + 3\cdot 73^{2} + 16\cdot 73^{3} + 38\cdot 73^{4} +O(73^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 36 + 50\cdot 73 + 42\cdot 73^{2} + 41\cdot 73^{3} + 59\cdot 73^{4} +O(73^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 37 + 22\cdot 73 + 30\cdot 73^{2} + 31\cdot 73^{3} + 13\cdot 73^{4} +O(73^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 44 + 31\cdot 73 + 69\cdot 73^{2} + 56\cdot 73^{3} + 34\cdot 73^{4} +O(73^{5})\)  Toggle raw display
$r_{ 7 }$ $=$ \( 47 + 14\cdot 73 + 72\cdot 73^{2} + 28\cdot 73^{3} + 26\cdot 73^{4} +O(73^{5})\)  Toggle raw display
$r_{ 8 }$ $=$ \( 67 + 40\cdot 73 + 17\cdot 73^{2} + 11\cdot 73^{3} + 43\cdot 73^{4} +O(73^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,4,8,5)(2,3,7,6)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(2,7)(3,6)$$0$
$1$$4$$(1,4,8,5)(2,6,7,3)$$2 \zeta_{4}$
$1$$4$$(1,5,8,4)(2,3,7,6)$$-2 \zeta_{4}$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.