Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(19109\)\(\medspace = 97 \cdot 197 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.4.3764473.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | even |
Determinant: | 1.19109.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{97}, \sqrt{197})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - 2x^{3} - 27x^{2} + 28x - 1 \) . |
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 2 + 39\cdot 53 + 21\cdot 53^{2} + 17\cdot 53^{3} + 39\cdot 53^{4} +O(53^{5})\) |
$r_{ 2 }$ | $=$ | \( 12 + 34\cdot 53 + 23\cdot 53^{2} + 31\cdot 53^{3} + 49\cdot 53^{4} +O(53^{5})\) |
$r_{ 3 }$ | $=$ | \( 42 + 18\cdot 53 + 29\cdot 53^{2} + 21\cdot 53^{3} + 3\cdot 53^{4} +O(53^{5})\) |
$r_{ 4 }$ | $=$ | \( 52 + 13\cdot 53 + 31\cdot 53^{2} + 35\cdot 53^{3} + 13\cdot 53^{4} +O(53^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | ✓ |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ | |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ | |
$2$ | $2$ | $(1,4)$ | $0$ | |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |