Properties

Label 2.19109.4t3.a.a
Dimension $2$
Group $D_{4}$
Conductor $19109$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(19109\)\(\medspace = 97 \cdot 197 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.4.3764473.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.19109.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{97}, \sqrt{197})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} - 27x^{2} + 28x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 2 + 39\cdot 53 + 21\cdot 53^{2} + 17\cdot 53^{3} + 39\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 + 34\cdot 53 + 23\cdot 53^{2} + 31\cdot 53^{3} + 49\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 42 + 18\cdot 53 + 29\cdot 53^{2} + 21\cdot 53^{3} + 3\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 52 + 13\cdot 53 + 31\cdot 53^{2} + 35\cdot 53^{3} + 13\cdot 53^{4} +O(53^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$