Properties

Label 2.1879.24t22.2c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 1879 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1879 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 5 x^{6} - 16 x^{5} + 27 x^{4} - 50 x^{3} + 56 x^{2} - 46 x + 25 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.1879.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 19 + \left(15 a + 8\right)\cdot 23 + \left(14 a + 10\right)\cdot 23^{2} + \left(12 a + 12\right)\cdot 23^{3} + \left(6 a + 17\right)\cdot 23^{4} + \left(21 a + 11\right)\cdot 23^{5} + \left(8 a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 9 + \left(7 a + 22\right)\cdot 23 + 8 a\cdot 23^{2} + 10 a\cdot 23^{3} + \left(16 a + 18\right)\cdot 23^{4} + \left(a + 1\right)\cdot 23^{5} + \left(14 a + 17\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 8 + \left(20 a + 14\right)\cdot 23 + \left(19 a + 11\right)\cdot 23^{2} + \left(11 a + 10\right)\cdot 23^{3} + \left(5 a + 19\right)\cdot 23^{4} + \left(11 a + 5\right)\cdot 23^{5} + \left(17 a + 3\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 7 + \left(a + 16\right)\cdot 23 + \left(15 a + 4\right)\cdot 23^{2} + \left(8 a + 2\right)\cdot 23^{3} + 6 a\cdot 23^{4} + \left(12 a + 8\right)\cdot 23^{5} + \left(9 a + 20\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 21 + 22\cdot 23 + 2\cdot 23^{2} + 19\cdot 23^{3} + 19\cdot 23^{4} + 22\cdot 23^{5} + 12\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 12 + \left(2 a + 6\right)\cdot 23 + \left(3 a + 8\right)\cdot 23^{2} + \left(11 a + 14\right)\cdot 23^{3} + \left(17 a + 18\right)\cdot 23^{4} + \left(11 a + 22\right)\cdot 23^{5} + \left(5 a + 3\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 15 + 14\cdot 23 + 19\cdot 23^{2} + 5\cdot 23^{3} + 17\cdot 23^{4} + 15\cdot 23^{5} + 9\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 13 a + 4 + \left(21 a + 9\right)\cdot 23 + \left(7 a + 10\right)\cdot 23^{2} + \left(14 a + 4\right)\cdot 23^{3} + \left(16 a + 4\right)\cdot 23^{4} + \left(10 a + 3\right)\cdot 23^{5} + \left(13 a + 4\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,6)(4,8)(5,7)$
$(2,4,7)(5,6,8)$
$(1,5,3,7)(2,4,6,8)$
$(2,6)(4,5)(7,8)$
$(1,4,3,8)(2,7,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,8)(5,7)$$-2$
$12$$2$$(2,6)(4,5)(7,8)$$0$
$8$$3$$(1,4,6)(2,3,8)$$-1$
$6$$4$$(1,4,3,8)(2,7,6,5)$$0$
$8$$6$$(1,2,4,3,6,8)(5,7)$$1$
$6$$8$$(1,4,2,5,3,8,6,7)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,8,2,7,3,4,6,5)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.