Properties

Label 2.1872.4t3.b.a
Dimension $2$
Group $D_{4}$
Conductor $1872$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1872\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.5616.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.52.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{-13})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 12x^{2} + 39 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 7 }$ to precision 7.

Roots:
$r_{ 1 }$ $=$ \( 1 + 3\cdot 7 + 6\cdot 7^{2} + 7^{3} + 6\cdot 7^{5} + 7^{6} +O(7^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 + 4\cdot 7 + 4\cdot 7^{2} + 5\cdot 7^{3} + 7^{5} +O(7^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 + 2\cdot 7 + 2\cdot 7^{2} + 7^{3} + 6\cdot 7^{4} + 5\cdot 7^{5} + 6\cdot 7^{6} +O(7^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 + 3\cdot 7 + 5\cdot 7^{3} + 6\cdot 7^{4} + 5\cdot 7^{6} +O(7^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.