Properties

Label 2.1823.24t22.2c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 1823 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1823 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 10 x^{6} - 16 x^{5} + 16 x^{4} - 10 x^{3} - 4 x^{2} + 7 x - 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.1823.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 2 + \left(21 a + 1\right)\cdot 31 + \left(12 a + 29\right)\cdot 31^{2} + \left(13 a + 23\right)\cdot 31^{3} + \left(6 a + 15\right)\cdot 31^{4} + 18\cdot 31^{5} + \left(3 a + 12\right)\cdot 31^{6} + \left(29 a + 3\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 17 a + 3 + \left(10 a + 1\right)\cdot 31 + \left(9 a + 10\right)\cdot 31^{2} + \left(7 a + 18\right)\cdot 31^{3} + \left(11 a + 1\right)\cdot 31^{4} + \left(9 a + 16\right)\cdot 31^{5} + \left(4 a + 4\right)\cdot 31^{6} + \left(14 a + 7\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 29 + \left(20 a + 29\right)\cdot 31 + \left(21 a + 20\right)\cdot 31^{2} + \left(23 a + 12\right)\cdot 31^{3} + \left(19 a + 29\right)\cdot 31^{4} + \left(21 a + 14\right)\cdot 31^{5} + \left(26 a + 26\right)\cdot 31^{6} + \left(16 a + 23\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 30 + \left(9 a + 29\right)\cdot 31 + \left(18 a + 1\right)\cdot 31^{2} + \left(17 a + 7\right)\cdot 31^{3} + \left(24 a + 15\right)\cdot 31^{4} + \left(30 a + 12\right)\cdot 31^{5} + \left(27 a + 18\right)\cdot 31^{6} + \left(a + 27\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 26 + \left(10 a + 25\right)\cdot 31 + \left(9 a + 12\right)\cdot 31^{2} + \left(7 a + 7\right)\cdot 31^{3} + \left(11 a + 14\right)\cdot 31^{4} + \left(9 a + 7\right)\cdot 31^{5} + \left(4 a + 27\right)\cdot 31^{6} + \left(14 a + 30\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 11 + 25\cdot 31 + 2\cdot 31^{2} + 6\cdot 31^{3} + 7\cdot 31^{4} + 19\cdot 31^{5} + 24\cdot 31^{6} + 2\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 21 + 5\cdot 31 + 28\cdot 31^{2} + 24\cdot 31^{3} + 23\cdot 31^{4} + 11\cdot 31^{5} + 6\cdot 31^{6} + 28\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 14 a + 6 + \left(20 a + 5\right)\cdot 31 + \left(21 a + 18\right)\cdot 31^{2} + \left(23 a + 23\right)\cdot 31^{3} + \left(19 a + 16\right)\cdot 31^{4} + \left(21 a + 23\right)\cdot 31^{5} + \left(26 a + 3\right)\cdot 31^{6} + 16 a\cdot 31^{7} +O\left(31^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,3)(5,7,8,6)$
$(1,5,4,8)(2,6,3,7)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,4)(2,6)(3,7)$
$(1,3,6)(2,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$12$$2$$(1,4)(2,6)(3,7)$$0$
$8$$3$$(1,3,6)(2,7,4)$$-1$
$6$$4$$(1,2,4,3)(5,7,8,6)$$0$
$8$$6$$(1,2,6,4,3,7)(5,8)$$1$
$6$$8$$(1,6,5,3,4,7,8,2)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,7,5,2,4,6,8,3)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.