Properties

Label 2.1815.4t3.a.a
Dimension $2$
Group $D_{4}$
Conductor $1815$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1815\)\(\medspace = 3 \cdot 5 \cdot 11^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.19965.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.15.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-11}, \sqrt{-15})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} - 4x^{2} + 5x + 9 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 6 + 15\cdot 23 + 10\cdot 23^{2} + 10\cdot 23^{3} + 7\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 + 8\cdot 23 + 17\cdot 23^{2} + 6\cdot 23^{3} + 6\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 14 + 14\cdot 23 + 5\cdot 23^{2} + 16\cdot 23^{3} + 16\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 18 + 7\cdot 23 + 12\cdot 23^{2} + 12\cdot 23^{3} + 15\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.