Properties

Label 2.180.6t5.b
Dimension $2$
Group $S_3\times C_3$
Conductor $180$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:\(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Artin number field: Galois closure of 6.0.648000.1
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Projective image: $S_3$
Projective field: 3.1.1620.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \(x^{2} + 16 x + 3\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 3 a + 10 + \left(16 a + 2\right)\cdot 17 + \left(5 a + 6\right)\cdot 17^{2} + \left(4 a + 12\right)\cdot 17^{3} + \left(6 a + 16\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 5 a + 2 + \left(16 a + 1\right)\cdot 17 + \left(10 a + 8\right)\cdot 17^{2} + \left(9 a + 13\right)\cdot 17^{3} + \left(a + 5\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 12 a + 7 + 12\cdot 17 + \left(6 a + 2\right)\cdot 17^{2} + \left(7 a + 12\right)\cdot 17^{3} + \left(15 a + 14\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 14 a + 13 + 15\cdot 17 + \left(11 a + 12\right)\cdot 17^{2} + \left(12 a + 10\right)\cdot 17^{3} + \left(10 a + 1\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 3 a + 9 + 4 a\cdot 17 + \left(10 a + 16\right)\cdot 17^{2} + \left(11 a + 8\right)\cdot 17^{3} + \left(3 a + 1\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 14 a + 12 + \left(12 a + 1\right)\cdot 17 + \left(6 a + 5\right)\cdot 17^{2} + \left(5 a + 10\right)\cdot 17^{3} + \left(13 a + 10\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,2)$
$(3,5,4)$
$(1,5)(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,5)(2,4)(3,6)$ $0$ $0$
$1$ $3$ $(1,6,2)(3,4,5)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,2,6)(3,5,4)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,6,2)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,2,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,6,2)(3,5,4)$ $-1$ $-1$
$3$ $6$ $(1,3,6,4,2,5)$ $0$ $0$
$3$ $6$ $(1,5,2,4,6,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.