Properties

Label 2.17e2_19.8t7.1c2
Dimension 2
Group $C_8:C_2$
Conductor $ 17^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$5491= 17^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 7 x^{6} + 6 x^{5} - 19 x^{4} + 24 x^{3} + 58 x^{2} + 106 x - 67 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd
Determinant: 1.17_19.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 3 + 34\cdot 47 + 33\cdot 47^{3} + 8\cdot 47^{4} + 6\cdot 47^{5} + 23\cdot 47^{6} + 28\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 4 + 37\cdot 47 + 38\cdot 47^{2} + 20\cdot 47^{4} + 38\cdot 47^{5} + 34\cdot 47^{6} + 12\cdot 47^{7} + 12\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 13 + 5\cdot 47 + 42\cdot 47^{2} + 31\cdot 47^{3} + 15\cdot 47^{4} + 6\cdot 47^{5} + 3\cdot 47^{7} + 44\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 23 + 12\cdot 47 + 45\cdot 47^{2} + 45\cdot 47^{3} + 32\cdot 47^{4} + 19\cdot 47^{5} + 17\cdot 47^{6} + 5\cdot 47^{7} + 46\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 24 + 4\cdot 47 + 13\cdot 47^{2} + 16\cdot 47^{3} + 37\cdot 47^{4} + 29\cdot 47^{5} + 20\cdot 47^{6} + 42\cdot 47^{7} + 46\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 35 + 37\cdot 47 + 2\cdot 47^{2} + 46\cdot 47^{3} + 12\cdot 47^{4} + 35\cdot 47^{5} + 21\cdot 47^{6} + 10\cdot 47^{7} + 19\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 42 + 4\cdot 47 + 22\cdot 47^{2} + 4\cdot 47^{3} + 15\cdot 47^{4} + 18\cdot 47^{5} + 7\cdot 47^{6} + 24\cdot 47^{7} + 4\cdot 47^{8} +O\left(47^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 45 + 4\cdot 47 + 23\cdot 47^{2} + 9\cdot 47^{3} + 45\cdot 47^{4} + 33\cdot 47^{5} + 15\cdot 47^{6} + 42\cdot 47^{7} + 33\cdot 47^{8} +O\left(47^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,5,7)(2,6,3,4)$
$(1,5)(2,3)(4,6)(7,8)$
$(2,3)(4,6)$
$(1,6,8,3,5,4,7,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,6)(7,8)$$-2$
$2$$2$$(2,3)(4,6)$$0$
$1$$4$$(1,8,5,7)(2,6,3,4)$$-2 \zeta_{4}$
$1$$4$$(1,7,5,8)(2,4,3,6)$$2 \zeta_{4}$
$2$$4$$(1,8,5,7)(2,4,3,6)$$0$
$2$$8$$(1,6,8,3,5,4,7,2)$$0$
$2$$8$$(1,3,7,6,5,2,8,4)$$0$
$2$$8$$(1,6,7,2,5,4,8,3)$$0$
$2$$8$$(1,2,8,6,5,3,7,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.