Properties

Label 2.17_71.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 17 \cdot 71 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1207= 17 \cdot 71 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{7} - 3 x^{6} - 8 x^{5} - 12 x^{4} + 25 x^{3} + 30 x^{2} + 27 x + 27 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.17_71.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{3} + x + 40 $
Roots:
$r_{ 1 }$ $=$ $ 16 a^{2} + 12 a + 36 + \left(26 a^{2} + 33 a + 37\right)\cdot 43 + \left(17 a^{2} + 6 a + 1\right)\cdot 43^{2} + \left(21 a^{2} + 16 a\right)\cdot 43^{3} + \left(38 a^{2} + 31 a + 10\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 a^{2} + 6 a + 37 + \left(13 a^{2} + 30 a + 9\right)\cdot 43 + \left(18 a^{2} + 4 a + 2\right)\cdot 43^{2} + \left(40 a^{2} + 18 a + 23\right)\cdot 43^{3} + \left(40 a^{2} + 25 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 a^{2} + 6 a + 38 + \left(17 a^{2} + 22 a + 31\right)\cdot 43 + \left(39 a^{2} + 20 a + 30\right)\cdot 43^{2} + \left(26 a^{2} + 7 a + 3\right)\cdot 43^{3} + \left(24 a^{2} + 40 a + 15\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 a^{2} + 5 a + 11 + \left(33 a^{2} + 15 a + 15\right)\cdot 43 + \left(9 a^{2} + 39 a + 26\right)\cdot 43^{2} + \left(21 a^{2} + 17 a + 3\right)\cdot 43^{3} + \left(39 a^{2} + 6 a + 25\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + 25 a + 2 + \left(42 a^{2} + 30 a + 34\right)\cdot 43 + \left(28 a^{2} + 15 a + 23\right)\cdot 43^{2} + \left(37 a^{2} + 19 a + 39\right)\cdot 43^{3} + \left(22 a^{2} + 14 a + 13\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 34 a + 20 + \left(26 a^{2} + 41 a + 18\right)\cdot 43 + \left(39 a^{2} + 8 a + 16\right)\cdot 43^{2} + \left(22 a^{2} + 26 a + 11\right)\cdot 43^{3} + \left(24 a^{2} + 14 a + 33\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 24 a + 5 + \left(4 a^{2} + 42 a + 10\right)\cdot 43 + \left(24 a^{2} + 17 a + 7\right)\cdot 43^{2} + \left(40 a^{2} + 31 a + 2\right)\cdot 43^{3} + \left(30 a^{2} + 34 a + 5\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 20 a^{2} + 14 a + 28 + \left(5 a^{2} + 28 a + 39\right)\cdot 43 + \left(9 a^{2} + 28 a + 25\right)\cdot 43^{2} + \left(24 a^{2} + 36 a + 5\right)\cdot 43^{3} + \left(15 a^{2} + a + 9\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 31 a^{2} + 3 a + 38 + \left(3 a^{2} + 14 a + 17\right)\cdot 43 + \left(28 a^{2} + 29 a + 37\right)\cdot 43^{2} + \left(22 a^{2} + 41 a + 39\right)\cdot 43^{3} + \left(20 a^{2} + 2 a + 1\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,6)(2,5)(3,9)(4,7)$
$(1,5,3)(2,6,9)(4,7,8)$
$(1,8,6,5,4,9,3,7,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,6)(2,5)(3,9)(4,7)$$0$
$2$$3$$(1,5,3)(2,6,9)(4,7,8)$$-1$
$2$$9$$(1,8,6,5,4,9,3,7,2)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,6,4,3,2,8,5,9,7)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,4,2,5,7,6,3,8,9)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.