Properties

Label 2.17_47.4t3.3
Dimension 2
Group $D_4$
Conductor $ 17 \cdot 47 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$799= 17 \cdot 47 $
Artin number field: Splitting field of $f= x^{8} - x^{6} - 30 x^{5} + 247 x^{4} - 784 x^{3} + 1400 x^{2} - 1504 x + 752 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 9\cdot 53 + 14\cdot 53^{2} + 13\cdot 53^{3} + 50\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 22\cdot 53 + 17\cdot 53^{2} + 32\cdot 53^{3} + 44\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 42\cdot 53 + 30\cdot 53^{2} + 32\cdot 53^{3} + 42\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 + 38\cdot 53 + 28\cdot 53^{2} + 14\cdot 53^{3} + 20\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 + 35\cdot 53 + 27\cdot 53^{2} + 13\cdot 53^{3} + 27\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 + 38\cdot 53 + 46\cdot 53^{2} + 46\cdot 53^{3} + 36\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 43 + 38\cdot 53 + 32\cdot 53^{2} + 18\cdot 53^{3} + 25\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 52 + 38\cdot 53 + 13\cdot 53^{2} + 40\cdot 53^{3} + 17\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,5,6)(3,4,8,7)$
$(1,3)(2,7)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,6)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $0$
$2$ $4$ $(1,2,5,6)(3,4,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.