Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 16 a + 10 + \left(8 a + 16\right)\cdot 23 + 5\cdot 23^{2} + \left(8 a + 7\right)\cdot 23^{3} + \left(21 a + 22\right)\cdot 23^{4} + \left(20 a + 4\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 19 + \left(14 a + 17\right)\cdot 23 + \left(22 a + 20\right)\cdot 23^{2} + \left(14 a + 22\right)\cdot 23^{3} + \left(a + 10\right)\cdot 23^{4} + \left(2 a + 2\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 5\cdot 23 + 14\cdot 23^{2} + 4\cdot 23^{3} + 17\cdot 23^{4} + 14\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 16 a + 5 + \left(8 a + 5\right)\cdot 23 + 2\cdot 23^{2} + 8 a\cdot 23^{3} + \left(21 a + 12\right)\cdot 23^{4} + \left(20 a + 20\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 13 + 17\cdot 23 + 8\cdot 23^{2} + 18\cdot 23^{3} + 5\cdot 23^{4} + 8\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 7 a + 14 + \left(14 a + 6\right)\cdot 23 + \left(22 a + 17\right)\cdot 23^{2} + \left(14 a + 15\right)\cdot 23^{3} + a\cdot 23^{4} + \left(2 a + 18\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3)(4,5)$ |
| $(1,4,3,6,2,5)$ |
| $(1,2,3)(4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,6)(2,4)(3,5)$ | $-2$ |
| $3$ | $2$ | $(2,3)(4,5)$ | $0$ |
| $3$ | $2$ | $(1,4)(2,6)(3,5)$ | $0$ |
| $2$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ |
| $2$ | $6$ | $(1,4,3,6,2,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.