Properties

Label 2.17_41.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 17 \cdot 41 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$697= 17 \cdot 41 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 3 x^{4} + 11 x^{3} - x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 10 + \left(8 a + 16\right)\cdot 23 + 5\cdot 23^{2} + \left(8 a + 7\right)\cdot 23^{3} + \left(21 a + 22\right)\cdot 23^{4} + \left(20 a + 4\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 19 + \left(14 a + 17\right)\cdot 23 + \left(22 a + 20\right)\cdot 23^{2} + \left(14 a + 22\right)\cdot 23^{3} + \left(a + 10\right)\cdot 23^{4} + \left(2 a + 2\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 11 + 5\cdot 23 + 14\cdot 23^{2} + 4\cdot 23^{3} + 17\cdot 23^{4} + 14\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 5 + \left(8 a + 5\right)\cdot 23 + 2\cdot 23^{2} + 8 a\cdot 23^{3} + \left(21 a + 12\right)\cdot 23^{4} + \left(20 a + 20\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 13 + 17\cdot 23 + 8\cdot 23^{2} + 18\cdot 23^{3} + 5\cdot 23^{4} + 8\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 14 + \left(14 a + 6\right)\cdot 23 + \left(22 a + 17\right)\cdot 23^{2} + \left(14 a + 15\right)\cdot 23^{3} + a\cdot 23^{4} + \left(2 a + 18\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,4,3,6,2,5)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,5)$ $-2$
$3$ $2$ $(2,3)(4,5)$ $0$
$3$ $2$ $(1,4)(2,6)(3,5)$ $0$
$2$ $3$ $(1,2,3)(4,5,6)$ $-1$
$2$ $6$ $(1,4,3,6,2,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.