Properties

Label 2.17_19_97.7t2.1c2
Dimension 2
Group $D_{7}$
Conductor $ 17 \cdot 19 \cdot 97 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$31331= 17 \cdot 19 \cdot 97 $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 8 x^{5} - 52 x^{4} - 68 x^{3} - 136 x^{2} + 4335 x + 19363 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.17_19_97.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 29 + 6\cdot 29^{2} + 28\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 21 + \left(23 a + 22\right)\cdot 29 + \left(3 a + 6\right)\cdot 29^{2} + 6\cdot 29^{3} + \left(22 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 28 + \left(22 a + 13\right)\cdot 29 + \left(27 a + 22\right)\cdot 29^{2} + \left(14 a + 5\right)\cdot 29^{3} + \left(5 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 6 + \left(6 a + 26\right)\cdot 29 + \left(a + 22\right)\cdot 29^{2} + \left(14 a + 23\right)\cdot 29^{3} + 23 a\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 8 + \left(5 a + 14\right)\cdot 29 + \left(25 a + 2\right)\cdot 29^{2} + \left(28 a + 3\right)\cdot 29^{3} + \left(6 a + 1\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 a + \left(6 a + 23\right)\cdot 29 + \left(a + 27\right)\cdot 29^{2} + \left(26 a + 2\right)\cdot 29^{3} + \left(28 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 18 a + 26 + \left(22 a + 14\right)\cdot 29 + \left(27 a + 27\right)\cdot 29^{2} + \left(2 a + 15\right)\cdot 29^{3} + 17\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,4)(3,6)(5,7)$
$(1,6)(2,7)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,6)(2,7)(3,5)$$0$
$2$$7$$(1,3,7,2,5,6,4)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$$7$$(1,7,5,4,3,2,6)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
$2$$7$$(1,2,4,7,6,3,5)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
The blue line marks the conjugacy class containing complex conjugation.