Properties

Label 2.17_19.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 17 \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$323= 17 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} + 9 x^{6} - 36 x^{5} + 110 x^{4} - 162 x^{3} + 203 x^{2} - 162 x + 101 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.17_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 53\cdot 101 + 43\cdot 101^{2} + 82\cdot 101^{3} + 77\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 57\cdot 101 + 61\cdot 101^{2} + 65\cdot 101^{3} + 91\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 19\cdot 101 + 56\cdot 101^{2} + 96\cdot 101^{3} + 71\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 33 + 44\cdot 101 + 39\cdot 101^{2} + 52\cdot 101^{3} + 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 + 75\cdot 101 + 99\cdot 101^{2} + 60\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 55 + 16\cdot 101 + 98\cdot 101^{2} + 52\cdot 101^{3} + 73\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 66 + 42\cdot 101 + 71\cdot 101^{2} + 69\cdot 101^{3} + 94\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 86 + 95\cdot 101 + 34\cdot 101^{2} + 84\cdot 101^{3} + 33\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,5)(3,4,8,7)$
$(1,3)(2,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$4$$(1,2,6,5)(3,4,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.