Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(1703\)\(\medspace = 13 \cdot 131 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.2.22139.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.1703.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{13}, \sqrt{-131})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - x^{3} - 7x^{2} - 11x - 9 \) . |
The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 10 + 88\cdot 101 + 24\cdot 101^{2} + 19\cdot 101^{3} + 95\cdot 101^{4} +O(101^{5})\) |
$r_{ 2 }$ | $=$ | \( 53 + 75\cdot 101 + 56\cdot 101^{2} + 100\cdot 101^{3} + 20\cdot 101^{4} +O(101^{5})\) |
$r_{ 3 }$ | $=$ | \( 66 + 48\cdot 101 + 20\cdot 101^{2} + 98\cdot 101^{3} + 12\cdot 101^{4} +O(101^{5})\) |
$r_{ 4 }$ | $=$ | \( 74 + 90\cdot 101 + 99\cdot 101^{2} + 84\cdot 101^{3} + 72\cdot 101^{4} +O(101^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ |
$2$ | $2$ | $(1,4)$ | $0$ |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.