Properties

Label 2.1703.4t3.a.a
Dimension $2$
Group $D_{4}$
Conductor $1703$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1703\)\(\medspace = 13 \cdot 131 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.223093.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.1703.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{13}, \sqrt{-131})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} - 10x^{2} + 11x + 63 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 26 + 65\cdot 101 + 55\cdot 101^{2} + 84\cdot 101^{3} + 93\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 39 + 38\cdot 101 + 19\cdot 101^{2} + 82\cdot 101^{3} + 85\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 63 + 62\cdot 101 + 81\cdot 101^{2} + 18\cdot 101^{3} + 15\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 76 + 35\cdot 101 + 45\cdot 101^{2} + 16\cdot 101^{3} + 7\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$