Properties

Label 2.165.8t17.c
Dimension $2$
Group $C_4\wr C_2$
Conductor $165$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:\(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Artin number field: Galois closure of 8.0.16471125.1
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Projective image: $D_4$
Projective field: 4.2.12375.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ \( 2 + 24\cdot 59 + 48\cdot 59^{2} + 5\cdot 59^{3} + 40\cdot 59^{4} + 32\cdot 59^{5} +O(59^{6})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 16 + 35\cdot 59 + 21\cdot 59^{2} + 42\cdot 59^{3} + 18\cdot 59^{4} + 27\cdot 59^{5} +O(59^{6})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 19 + 44\cdot 59 + 57\cdot 59^{2} + 7\cdot 59^{3} + 11\cdot 59^{4} + 37\cdot 59^{5} +O(59^{6})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 28 + 3\cdot 59 + 29\cdot 59^{2} + 45\cdot 59^{3} + 19\cdot 59^{4} + 11\cdot 59^{5} +O(59^{6})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 30 + 23\cdot 59 + 30\cdot 59^{2} + 28\cdot 59^{3} + 39\cdot 59^{4} + 57\cdot 59^{5} +O(59^{6})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 42 + 36\cdot 59 + 24\cdot 59^{2} + 48\cdot 59^{3} + 11\cdot 59^{4} + 13\cdot 59^{5} +O(59^{6})\)  Toggle raw display
$r_{ 7 }$ $=$ \( 48 + 38\cdot 59 + 10\cdot 59^{2} + 54\cdot 59^{3} + 2\cdot 59^{4} + 39\cdot 59^{5} +O(59^{6})\)  Toggle raw display
$r_{ 8 }$ $=$ \( 52 + 29\cdot 59 + 13\cdot 59^{2} + 3\cdot 59^{3} + 33\cdot 59^{4} + 17\cdot 59^{5} +O(59^{6})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,3,7,4)$
$(1,4,5,3)(2,6,7,8)$
$(2,7)(3,4)$
$(1,6,5,8)(2,4,7,3)$
$(1,5)(2,7)(3,4)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,7)(3,4)(6,8)$ $-2$ $-2$
$2$ $2$ $(2,7)(3,4)$ $0$ $0$
$4$ $2$ $(1,7)(2,5)(3,6)(4,8)$ $0$ $0$
$1$ $4$ $(1,6,5,8)(2,4,7,3)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,8,5,6)(2,3,7,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(2,3,7,4)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(2,4,7,3)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(1,5)(2,4,7,3)(6,8)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$2$ $4$ $(1,5)(2,3,7,4)(6,8)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,6,5,8)(2,3,7,4)$ $0$ $0$
$4$ $4$ $(1,4,5,3)(2,6,7,8)$ $0$ $0$
$4$ $8$ $(1,2,6,4,5,7,8,3)$ $0$ $0$
$4$ $8$ $(1,4,8,2,5,3,6,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.