Basic invariants
Dimension: | $2$ |
Group: | $S_3$ |
Conductor: | \(1620\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 5 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | 3.1.1620.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_3$ |
Parity: | odd |
Determinant: | 1.20.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | 3.1.1620.1 |
Defining polynomial
$f(x)$ | $=$ | \(x^{3} - 3 x - 8\) ![]() |
The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 11 + 25\cdot 43 + 12\cdot 43^{2} + 23\cdot 43^{3} + 10\cdot 43^{4} +O(43^{5})\) ![]() |
$r_{ 2 }$ | $=$ | \( 13 + 40\cdot 43 + 29\cdot 43^{2} + 16\cdot 43^{3} + 10\cdot 43^{4} +O(43^{5})\) ![]() |
$r_{ 3 }$ | $=$ | \( 19 + 20\cdot 43 + 3\cdot 43^{3} + 22\cdot 43^{4} +O(43^{5})\) ![]() |
Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ | Character value |
$1$ | $1$ | $()$ | $2$ |
$3$ | $2$ | $(1,2)$ | $0$ |
$2$ | $3$ | $(1,2,3)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.