Properties

Label 2.1600.4t3.c.a
Dimension $2$
Group $D_4$
Conductor $1600$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_4$
Conductor: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin field: Galois closure of 8.0.1024000000.6
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.4.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{5})\)

Defining polynomial

$f(x)$$=$ \( x^{8} + 4x^{6} + 16x^{4} - 56x^{2} + 36 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 2 + 17\cdot 29 + 14\cdot 29^{2} + 29^{3} + 22\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 7 + 14\cdot 29 + 19\cdot 29^{2} + 27\cdot 29^{3} + 14\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 8 + 5\cdot 29 + 25\cdot 29^{2} + 8\cdot 29^{3} + 19\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 13 + 2\cdot 29 + 29^{2} + 6\cdot 29^{3} + 12\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 16 + 26\cdot 29 + 27\cdot 29^{2} + 22\cdot 29^{3} + 16\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 21 + 23\cdot 29 + 3\cdot 29^{2} + 20\cdot 29^{3} + 9\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 22 + 14\cdot 29 + 9\cdot 29^{2} + 29^{3} + 14\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 27 + 11\cdot 29 + 14\cdot 29^{2} + 27\cdot 29^{3} + 6\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3,7,5)(2,4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,3,7,5)(2,4,8,6)$$0$

The blue line marks the conjugacy class containing complex conjugation.