Properties

Label 2.1575.8t11.a
Dimension $2$
Group $Q_8:C_2$
Conductor $1575$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(1575\)\(\medspace = 3^{2} \cdot 5^{2} \cdot 7 \)
Artin number field: Galois closure of 8.0.558140625.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: \(\Q(\sqrt{-3}, \sqrt{-7})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 22 + 82\cdot 109 + 67\cdot 109^{2} + 26\cdot 109^{4} +O(109^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 28 + 48\cdot 109 + 52\cdot 109^{2} + 88\cdot 109^{3} + 101\cdot 109^{4} +O(109^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 37 + 97\cdot 109 + 26\cdot 109^{2} + 84\cdot 109^{3} + 23\cdot 109^{4} +O(109^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 40 + 108\cdot 109 + 14\cdot 109^{2} + 80\cdot 109^{3} + 55\cdot 109^{4} +O(109^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 48 + 54\cdot 109 + 82\cdot 109^{2} + 7\cdot 109^{3} + 101\cdot 109^{4} +O(109^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 83 + 92\cdot 109 + 99\cdot 109^{2} + 3\cdot 109^{3} + 65\cdot 109^{4} +O(109^{5})\)  Toggle raw display
$r_{ 7 }$ $=$ \( 89 + 6\cdot 109 + 6\cdot 109^{2} + 68\cdot 109^{3} + 35\cdot 109^{4} +O(109^{5})\)  Toggle raw display
$r_{ 8 }$ $=$ \( 90 + 54\cdot 109 + 85\cdot 109^{2} + 102\cdot 109^{3} + 26\cdot 109^{4} +O(109^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,5)(7,8)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$
$(1,4,2,6)(3,7,5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$ $0$
$2$ $2$ $(3,5)(7,8)$ $0$ $0$
$2$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $0$ $0$
$1$ $4$ $(1,4,2,6)(3,7,5,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,6,2,4)(3,8,5,7)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,7,2,8)(3,4,5,6)$ $0$ $0$
$2$ $4$ $(1,5,2,3)(4,8,6,7)$ $0$ $0$
$2$ $4$ $(1,4,2,6)(3,8,5,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.