Properties

Label 2.15296.6t3.a.a
Dimension $2$
Group $D_{6}$
Conductor $15296$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(15296\)\(\medspace = 2^{6} \cdot 239 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.6989782528.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.239.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.239.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 12x^{4} + 36x^{2} + 1912 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 1 + 5\cdot 13 + 2\cdot 13^{2} + 7\cdot 13^{3} + 5\cdot 13^{4} + 12\cdot 13^{5} + 9\cdot 13^{6} + 7\cdot 13^{7} + 4\cdot 13^{8} + 7\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 7 a + 9 + \left(3 a + 5\right)\cdot 13 + \left(9 a + 2\right)\cdot 13^{2} + \left(7 a + 10\right)\cdot 13^{3} + \left(5 a + 4\right)\cdot 13^{4} + \left(12 a + 3\right)\cdot 13^{5} + a\cdot 13^{6} + \left(11 a + 11\right)\cdot 13^{7} + \left(10 a + 10\right)\cdot 13^{8} + \left(7 a + 10\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 7 a + 10 + \left(3 a + 10\right)\cdot 13 + \left(9 a + 4\right)\cdot 13^{2} + \left(7 a + 4\right)\cdot 13^{3} + \left(5 a + 10\right)\cdot 13^{4} + \left(12 a + 2\right)\cdot 13^{5} + \left(a + 10\right)\cdot 13^{6} + \left(11 a + 5\right)\cdot 13^{7} + \left(10 a + 2\right)\cdot 13^{8} + \left(7 a + 5\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 12 + 7\cdot 13 + 10\cdot 13^{2} + 5\cdot 13^{3} + 7\cdot 13^{4} + 3\cdot 13^{6} + 5\cdot 13^{7} + 8\cdot 13^{8} + 5\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 a + 4 + \left(9 a + 7\right)\cdot 13 + \left(3 a + 10\right)\cdot 13^{2} + \left(5 a + 2\right)\cdot 13^{3} + \left(7 a + 8\right)\cdot 13^{4} + 9\cdot 13^{5} + \left(11 a + 12\right)\cdot 13^{6} + \left(a + 1\right)\cdot 13^{7} + \left(2 a + 2\right)\cdot 13^{8} + \left(5 a + 2\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 6 a + 3 + \left(9 a + 2\right)\cdot 13 + \left(3 a + 8\right)\cdot 13^{2} + \left(5 a + 8\right)\cdot 13^{3} + \left(7 a + 2\right)\cdot 13^{4} + 10\cdot 13^{5} + \left(11 a + 2\right)\cdot 13^{6} + \left(a + 7\right)\cdot 13^{7} + \left(2 a + 10\right)\cdot 13^{8} + \left(5 a + 7\right)\cdot 13^{9} +O(13^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(2,5)(4,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,6)$$-2$
$3$$2$$(1,3)(2,5)(4,6)$$0$
$3$$2$$(2,6)(3,5)$$0$
$2$$3$$(1,2,6)(3,4,5)$$-1$
$2$$6$$(1,3,2,4,6,5)$$1$

The blue line marks the conjugacy class containing complex conjugation.