Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 a + 9 + \left(5 a + 6\right)\cdot 13 + \left(2 a + 9\right)\cdot 13^{2} + \left(4 a + 5\right)\cdot 13^{3} + \left(4 a + 11\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a + 12 + \left(3 a + 7\right)\cdot 13 + \left(12 a + 9\right)\cdot 13^{2} + \left(2 a + 6\right)\cdot 13^{3} + \left(11 a + 10\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 a + 6 + 2 a\cdot 13 + \left(12 a + 12\right)\cdot 13^{2} + \left(9 a + 11\right)\cdot 13^{3} + \left(8 a + 1\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 9 a + 10 + \left(10 a + 11\right)\cdot 13 + 8\cdot 13^{2} + \left(3 a + 9\right)\cdot 13^{3} + 4 a\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 + 10\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 11 a + 1 + \left(9 a + 9\right)\cdot 13 + 5\cdot 13^{2} + \left(10 a + 10\right)\cdot 13^{3} + \left(a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 3 a + 6 + \left(7 a + 2\right)\cdot 13 + \left(10 a + 6\right)\cdot 13^{2} + \left(8 a + 7\right)\cdot 13^{3} + \left(8 a + 11\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,4)(2,5)(3,6)$ |
| $(1,6)(3,5)(4,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $7$ | $2$ | $(1,4)(2,5)(3,6)$ | $0$ |
| $2$ | $7$ | $(1,7,4,6,5,2,3)$ | $\zeta_{7}^{4} + \zeta_{7}^{3}$ |
| $2$ | $7$ | $(1,4,5,3,7,6,2)$ | $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$ |
| $2$ | $7$ | $(1,6,3,4,2,7,5)$ | $\zeta_{7}^{5} + \zeta_{7}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.