Properties

Label 2.144.4t3.a.a
Dimension $2$
Group $D_4$
Conductor $144$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_4$
Conductor: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin field: Galois closure of 8.0.2985984.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.4.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\zeta_{12})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{7} + 2x^{6} - 2x^{5} + 7x^{4} - 10x^{3} + 8x^{2} - 4x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 10 + 32\cdot 37 + 27\cdot 37^{2} + 11\cdot 37^{3} + 22\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 14 + 35\cdot 37 + 27\cdot 37^{2} + 22\cdot 37^{3} + 34\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 19 + 2\cdot 37 + 9\cdot 37^{2} + 9\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 21 + 31\cdot 37 + 15\cdot 37^{2} + 34\cdot 37^{3} + 4\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 22 + 6\cdot 37 + 31\cdot 37^{2} + 2\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 31 + 10\cdot 37 + 14\cdot 37^{2} + 6\cdot 37^{3} + 4\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 34 + 37 + 34\cdot 37^{2} + 17\cdot 37^{3} + 22\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 36 + 26\cdot 37 + 24\cdot 37^{2} + 16\cdot 37^{3} + 11\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,7)(6,8)$
$(1,3,6,4)(2,7,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,8)(3,4)(5,7)$$-2$
$2$$2$$(1,2)(3,5)(4,7)(6,8)$$0$
$2$$2$$(1,7)(2,3)(4,8)(5,6)$$0$
$2$$4$$(1,3,6,4)(2,7,8,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.